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(ABSTRACT)

Layerwise finite element analyses -of geodesically stiffened cylindrical shells are presented. The
layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical
shells. The Ritz variational method is used to develop an analytical approach for studying the
buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method
utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of
the layerwise shells couples a one-dimensional finite element through the thickness with a Navier
solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analyt-
ical method are compared with smeared buckling results and with NASA Testbed finite element
results. The development of layerwise shell and beam finite elements is presented and these ele-
ments are used to perform the displacement field, stress, and first-ply failure analyses. The layer-
wise shell elements are used to model the shell skin and the layerwise beam elements are used to
model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the
global stiffness matrix. A series of analytical studies are made to compare the response of geodes-
ically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness,
stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesi-
cally stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addi-
tion, interlaminar stress results near the stiffener intersection are presented. First-ply failure
analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a

few selected cases.
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Chapter 1

Introduction

1.0 Background

Laminated composite shell structures have found varied applications in complicated
aerospace structural systems. This is due primarily to the advantageous properties of
composite materials such as high strength-to-weight and stiffness-to-weight ratios for
weight sensitive applications. Additionally, composite structures have a high fatigue life,
corrosion resistance, low fabrication cost, and are tailorable to the loading environment.
Aerospace applications using composite structures are almost limitless, but often require
the use of sophisticated analyses to determine the response behavior to external loads.
This is because laminated composite materials consist of two or more layers that are
bonded together to achieve desired structural properties. Material properties of lami-
nated composites are discontinuous through the thickness because of the different ma-
terial layers in the laminate. Thus, the analysis of composite structures is quite

complicated due to material discontinuities across the laminate interfaces, bending-
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stretching coupling in the laminate, and the geometrically nonlinear effects. Traditional
analysis methods applied to isotropic materials cannot be applied directly to composite

materials.

As new applications of composite structures evolve, so also the analytical techniques to
study these applications must also evolve. Existing metal aircraft design methods permit
the skin panels of some structural components to buckle under various loading condi-
tions. Hence, these structures are designed to have postbuckling strength. Before com-
posite structural components can be designed with similar buckling response, their
strength limits and failure characteristics must be well understood [1,2]. Grid-stiffening
concepts based on new, automated manufacturing methods such as filament winding
where the co-curing of stiffeners and skin is achieved hold great potential for cost
savings. Additional applications of stiffened shells may be found in aircraft fuselages,

rocket motor cases, oil platform supports, grain silos, and submarine hulls.

Accurate design analysis of stiffened circular cylindrical composite shells is of great im-
portance in the aerospace industry as it relates to aircraft fuselage design. The objective
of this study will be to concentrate on the analysis of geodesically stiffened cylindrical
composite shells subjected to compressive loads. The analysis will include a study of the
stiffened shell buckling and stress analyses. See Figure | for a description of the
geodesically stifTened shell system. Most previous analyses of stiffened composite shells
have utilized either a smeared stiffener approach or a linear finite element analysis to
determine the buckling loads. Although few, nonlinear analyses of stiffened shells are
typically performed using the finite element method. Analysis of stiffened composite
shells must include the failure characteristics of the shell structure including general in-

stability, local stresses, interlaminar stresses, and failure analysis.
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Traditionally, in order to capture the localized effects in laminated composite shells a
three-dimensional (3-D) finite element analysis must be used. Further, a fully nonlinear
3-D finite element analysis must be performed to characterize the structural response in
the postbuckling regime. Unfortunately, if a laminated composite shell is modeled with
3-D elements an excessively refined mesh must be used because the individual lamina
thickness dictates the aspect ratio of the elements. The aspect ratio of the elements must
be kept reasonable to avoid shear locking. Even in localized high stress regions a 3-D

analysis will be computationally intensive and expensive,

The motivation of this research is to develop an accurate analytical methodology for the
study of stiffened circular laminated composite shells without applying a costly nonlinear
3-D analysis. The analysis should be accurate in the nonlinear region and provide for
any localized high stress regions. The interlaminar stresses near the stiffener intersections
of stiflened structures is of interest to shell design engineers. Moreover, the effects of
these interlaminar stresses on the structural integrity of stiffened shells has not been de-

termined. The literature review in the next section provides a background for this study.
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1.2 Literature Review

The purpose of this literature review is to present the current state of analysis of stiffened
composite cylindrical shells. Also, included are discussions of shell theories, finite ele-
ment methods, discrete stiffener approaches, and failure mechanisms in composite ma-
terials. This should provide sufficient background for the detailed theoretical and

numerical work which follows.

1.2.1 Shell Theories and Finite Element Applications

The first classical theory of shells was proposed by Love [3] in 1888. The basic premise
of Love’s paper is the Kirchhofl-Love theory in which straight lines normal to the
undeformed middle surface remain straight, inextensible, and normal to the deformed
middle surface. As a result, the transverse normal strains are assumed to be zero and
the transverse shear deformations are neglected. Love’s theory can be applied to thin
shells where the shell thickness is small compared to the least radius of curvature. An
improvement to Love’s work was made by Sanders [4) when he presented a theory to
remove the strains for small rigid body rotations which are erroneously predicted by
Love’s theory. The thin shell approximations of Love requires that the thickness of the
shell is small compared with the nominal radius of curvature. Donnell [S] removed the
thin shell approximation of Love by developing a theory for shallow shells. Reissner [6)
and Mindlin [7] each developed shear deformation theories for plates and Reissner

(8,9,10] extended the theory to include transverse shear deformation in shells. Surveys
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of classical linear elastic shell theories can be found in the works of Naghdi [11], Bert

[12], Krauss [13], and Flugge [14].

The use of compasite shell structures has forced the development of appropriate shell
theories that can accurately account for the effects of bending-stretching coupling, shear
deformations, and transverse normal strains. Ambartsumyan [15,16] developed the first
analysis that incorporated bending-stretching coupling. Ambartsumyan’s work dealt
with orthotropic shells rather than anisotropic shells. Dong et al. [17} developed a theory
for thin laminated anisotropic shells by applying Donnell type equations to Reissner’s
and Stavsky's [18] work for plates. Fligge's shell theory [14] was used by Cheng and
Ho [19] in their buckling analysis of laminated anisotropic cylindrical shells. A first ap-
proximation theory for the unsymmetric deformation of nonhomogeneous, anisotropic,
elastic cylindrical shells was derived by Widera et al. [20-22] by means of asymptotic in-
tegration of the three-dimensional elasticity equations. The laminated shell theories
discussed thus far are based on the Kirchhoff-Love assumptions and therefore are only
applicable to thin shells with mild material anisotropy. Application of such theories to
layered anisotropic laminated composite shells could lead to as much as 30% or more

errors in deflections, stresses, and frequencies according to Reddy [23].

The effects of transverse shear deformation in composite shells were introduced by
Gulati and Essenburg [24], Hsu and Wang [25], Zukas and Vinson [26], and Dong and
Tso [27]. The development presented in [24] is based upon the shell theory given by
Naghdi [28,29] and assumes symmetry of the elastic properties with respect to the middle
surface of the shell. The theory presented in [26] also includes the effects of transverse
isotropy and thermal expansion through the shell thickness. The theories of references

[25,27] are only applicable to orthotropic cylinders. Whitney and Sun [30,31] developed
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a higher-order theory for laminated anisotropic cylindrical shells. The theory includes
both transverse shear deformations and transverse normal strain, Reddy [23,32] extended
Sanders theory for doubly curved shells to a shear deformation theory of laminated
shells. The theory accounts for transverse shear strains and rotation about the normal
to the shell midsurface. Reddy and Liu [33] proposed a higher-order shear deformation
theory for laminated shells. The theory is based on a displacement field in which the
displacements of the middle surface are expanded as cubic functions of the thickness
coordinate, and the transverse displacement is assumed constant through the thickness.
This displacement field leads to a parabolic distribution of the transverse shear stresses
and therefore no shear correction factors are used. Librescu (34,35] developed a refined
geometrically nonlinear theory of anisotropic symmetrically laminated composite shal-
low shells by incorporating transverse shear deformation and transverse normal stress
effects. The theory was derived using a Lagrangian formulation in which the three-

dimensional strain displacement relations were modified to include the nonlinear terms.

Recently, Reddy [36] developed a layerwise laminate theory which yields a layerwise
smooth representation of displacements through the thickness. The layerwise laminate
theory of Reddy (LWTR) reduces the 3-D elasticity theory to a quasi 3-D laminate
theory by assuming an approximation of displacements through the thickness. Reddy
[37] and Reddy and Barbero [38] extended the LWTR to the vibration of laminated cy-
lindrical shells. Further study of laminated shell theories may be found in papers by Bert

and Francis [39] and Kapania [40].

A large number of different finite elements have been formulated for the static and dy-
namic analysis of isotropic and anisotropic shells. One of three approaches are usually

followed in shell finite element theoretical development. The first approach involves the
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development of finite elements from an existing 2-D shell theory [41,42). In the second
approach, 3-D elements based on three-dimensional elasticity theory are used [43,44].
For the third method, 3-D degenerated elements are derived from the 3-D elasticity
theory of shells [45-d9]. One of the earliest uses of finite elements in layered composite
shells was provided by Dong [50] on the analysis of statically loaded orthotropic shells
of revolution. Other authors [51-54] continued the development of finite elements appli-
cable to laminated composite shells. Nonlinear analysis is critical in the study of shell
structures. The nonlinear response of shells under external loads was published in refer-
ences [31, 47-49, 55-59] among others for laminated composite shells. A more detailed

discussion of laminated shell finite elements may be found in [40).

1.2.2 Structural Analysis of Stiffened Shells

The circular cylindrical shell is used extensively as a primary load carrying structure in
many applications and is therefore subjected to various loadings. Design limit loads of-
ten result from general or local instability due to the action or interaction of pressure,
axial, torsional, and thermal loads. The elastic stability of monocoque isotropic cylinders
is well documented in the open literature [5,14,60-67). Developments on the buckling
of unstiffened laminated composite circular cylinders may be found in references [68-77].
In 1947, Van der Neut [78] studied the effects of eccentric stiffeners on the buckling of
circular cylindrical shells. The work presented in [78] showed a factor of three in the
difference between the theoretical buckling loads for internally and externally stiffened
shells under axial compression. Baruch and Singer [79] presented work on the general

instability of a simply supported cylindrical shell under hydrostatic pressure that was
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analyzed by cénsidering the ‘distributed stifTness’ of the frames and stringers separately,
taking into account their eccentricity. Additional theoretical work on the buckling of
isotropic cylindrical shells with eccentric stiffeners may be found in the papers by
Hedgepeth and Hall [80], Singer et al. (81,82, Block et al. [83], and McElman et al. [84).
Some of the first experimental work on the buckling of eccentrically stiffened cylinders
was conducted by Card [85] and this work was compared to theoretical results by Card
and Jones [86]. Many other papers on the theoretical and experimental buckling of ec-
centrically stiffened cylindrical shells are available in the open literature. The calculation
of accurate buckling loads for stiffened composite cylinders is a formidable task because
of material anisotropy, various loading and boundary conditions, skin-stiffener inter-

action, differing moduli in tension and compression, and nonlinear behavior.

Analysis of stiffened laminated cylindrical shells was first employed using the smeared
stiffener approach. This type of analysis treats the eccentrically stiffened composite shell
as an equivalent laminated cylindrical shell. A variational procedure is usually employed
in order to obtain the results. The smeared approach was used by Simitses [87-89] and
Jones [90,91] for the stability analysis of ring and stringer (axially) stiffened composite
cylindrical shells. Simitses [87-89] considered the stiffened circular cylindrical shell as
being orthotropic and reduced the strain-displacement relations to the Donnell type
equations. Various loading conditions such as axial compression, lateral pressure,
hydrostatic pressure, and torsion are considered for shells with clamped boundary con-
ditions in references [87-89). Jones” work [90,91] was presented for a circular cylindrical
shell with multiple orthotropic layers and eccentric stiffeners under axial compression,
lateral pressure, or a combination thereof. Classical stability theory which implies a

membrane prebuckled state was used for the simply supported edge boundary condi-
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tions. More recently, Reddy [37] has developed a smeared approach for axial and ring

stiffened composite shells using the layerwise theory.

A new technology known as continuous filament grid stiffening has enabled the manu-
facture of complex stiffened cylindrical shells. This cost effective process reduces the
number of parts and fasteners since the stiffeners are integrally wound as part of the
shell. In this study, emphasis will be upon geodesically stiffened shells produced by the
aforementioned manufacturing process. To date, published work on the subject of
geodesically stiffened shells is sparse. Buckling analysis of orthotropic cylindrical shells
with eccentric spiral-type stiffeners using the smeared technique was conducted by
Soong [92] for simply supported shells subjected to one of the following loadings: axial
compression, hydrostatic pressure, torsion, and bending. Soong concluded that based
on equal stiffener weight or equal strength, the spirally stiffened cylinders are about
equal to the ring and stringer cylinders for axial compression and pure bending loads,
but are superior in resisting torsion hydrostatic pressure loads. Meyer [93] studied an
isotropic geodesically stiffened shell have 45 © integrally milled out one sided stiffeners.
This type of stiffener arrangement was used to exclude the buckling modes between hoop
reinforcements. Meyer used a smeared approach for simply supported shells and con-
cluded that no increases in axial critical loads were obtained for addition of internal
pressure. Studies of isogrid composite cylindrical shells were conducted by Rehfield et
al. [94] as well as Reddy et al. [95) extended the work to orthogrid stiffened composite
shells. In both papers [94,95] a Donnell type theory was used for general instability, skin
buckling, and stiffener buckling. Shaw and Simitses [96] used a smeared procedure in the
nonlinear analysis of axially loaded laminated cylindrical shells with various in place
transverse supports. The work in [96] includes the effects of geometric imperfections and

lamina stacking sequence. Further work on geodesically type stiffened cylindrical shells
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using a smeared approach may be found in references [97-99]. The smeared stiffener
technique is efTective if the cross sections of each stiffener is the same and the stifTener
spacing is small. If the number of stiffeners is small or the spacing is large, the smeared
stiffener analysis does not yield accurate results and usually overpredicts the buckling

load.

A procedure other than the smeared technique must be used for the buckling analysis,
vibration and/or stress analysis of sparsely stiffened shells. It is desirable to treat the
stifTeners and skin as separate structural components to determine the most accurate
buckling or vibration mode and the local peak stresses and strains. The discrete analysis
procedure is the only alternative to a finite element analysis to study localized effects.
Several authors [100-103] have studied the vibration analysis of discretely stiffened cy-
lindrical shells. Because of the relatively simple geometry of ring stiffened cylindrical
shells, treatment of the circumferential rings as discrete elements have been considered
in several papers [104-107]. Wang et al. [108,109] first developed a discrete analysis for
isotropic cylindrical shells with stiffeners and then later extended the same concepts to
composite cylindrical shells with stiffeners [110]. In the discrete analysis of [110] separate
equations are developed for the axial stiffeners, ring stiffeners, and skin. The equations
are coupled through interacting normal and shear loads via the application of an Airy
stress [unction to the compatibility relations. Pochtman and Tugai [111] used a discrete
analysis to study the stability of composite cylindrical shells stiffened with cross ribs. The
development was based on the principle of minimum potential energy where the strain
energy of the skin and the stiffeners were treated as separate quantities. Chao et al. [112]
also employed the principle of minimum potential energy in the analysis of stiffened
orthotropic foam sandwich cylindrical shells. The authors in [112] included the effects

of transverse shear deformation in their development. Birman [113] applied a discrete
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analysis to the divergence instability of reinforced composite cylindrical shells. The de-
velopment consisted of solving the equations of motion in terms of displacements. The
Dirac dclta function was applied to discretely include the stiffeners’ extensional, bending,
and torsional termts in the equations of motion. Additional references on buckling of

discretely stiffened cylindrical shells may be found in [114-117].

Another method of constraining stiffeners to the skin is by the application of the
Lagrange multiplicr method. Several authors used the Lagrange multiplier method in
plate stability problems in order to satisfy boundary conditions [118-121). Al-Shareedah
and Seireg [122] correctly predicted the transverse deflection of a pressure loaded rec-
tangular isotropic plate with an oblique stiffener. Lagrange multipliers were used to en-
force transverse displacement continuity between the plate and stiffener at a finjte
number of points. Phillips and Giirdal [123] applied the same technique to the stability
of orthotropic plates with multiple orthotropic oblique stiffeners. The Lagrange multi-
plier method should be viable for stiffened composite circular cylindrical shells. Johnson
and Rastogi [124] applied the Lagrange multiplier method to orthogonally stiffened
composite cylindrical shells in order to determine the interacting loads between the
stiffeners and the shell wall when the shells are subjected to internal pressure. No studies
are presented in the open literature on the buckling of stiffened layerwise plates or shells
having discrete stiffeners using an analytical method. The Lagrange multiplier method

could easily be used to attach the stiffeners to the skin of a layerwise plate or shell.

Finite element analysis of stiffened structures has been divided into several categories.
The simplest yet least accurate method is to use a coarse model with lumped stifTeners.
In the lumped stiffener method each stiffener is lumped into the plate or shell on the

nearest element boundary. The stiffeners are assumed to be connected along the nodes
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of the plate or shell elements as bar elements. This model introduces inconsistencies.
The lumped method is theoretically inaccurate, as the lumped stiffener indicates a cou-
pling along the nodes to which it is connected whereas a stiffener placed within a plate
or shell element indicates coupling of all the nodes of the element. Further, diagonal
stiffening is difficult to achieve with this method. A second approach is to use
orthotropic simulation (smeared technique) of stiffened structures. This method and its
deficiencies was discussed previously for buckling analysis of stiffened cylindrical shells.
Another approach is the development of a special bending element where the stiffener
stiffnesses arc incorporated into the bending element at the elemental level see references
(125-130]. This method may work well for bending, but the effects of in-plane loadings
are not documented. Also, obtaining the skin/stiffener interaction mechanisms is diffi-
cult to extract using this approach. The final method of modeling stiffened structures
is by representing the stiffeners as beam, plate, or shell elements. This method provides
the greatest accuracy, the most realistic model of skin/stiffener iﬁteraction, and conse-

quently will be the method used in this work.

When employing the discretely stiffened finite element approach often curved beams are
used as reinforcing members for shells. The beam elements must have a compatible dis-
placement pattern with that of the shell. Kohnke et al. [I31] analyzed an eccentrically
stiffened cylindrical shell by using a beam finite element with displacements compatible
with the cylindrical shell element. Venkatesh and Rao [132] developed a laminated
anisotropic curved beam finite element to be used in conjunction with anisotropic shell
elements {133-135]. Bhimaraddi et al. [136] used shear deformable laminated curved beam
elements to study stiffened laminated shells. Ferguson and Clark [137] developed a var-
1able thickness curved beam and shell stiffening element with transverse shear deforma-

tion for isotropic elements. Reddy and Liao [138,139] utilized degenerated 3-D beam
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elements as stiffening members in their nonlinear analysis of composite shells. An alter-
native approach to stifTening shell structures with beams is to approximate the stifTeners
with the same element type used for the shell [140). Using this procedure results in the

introduction of a substantial number of additional nodes and nodal displacements.

Work on postbuckling analysis of stiffened shells is sparse. Knight and Starnes et al.
[1,2] have done some work on the postbuckling analysis of stiffened and unstiffened
composite panels using a finite element analysis. Sandhu et al. [141] performed a finite
element analysis of the torsional buckling and postbuckling of composite geodétic cyl-
inders. This work concluded that joint flexibility is an important factor in the overall
shell behavior. Hansen and Tennyson [142] presented an overview of the development
of a computer model for analyzing the crash response of stiffened composite fuselage
structures. A finite element formulation was presented that supposedly can treat lami-
nated shell buckling, large deflections, nonlinear response, and element failure. However,

no results were presented for this work.

The displacements, stresses, and failure analysis of shells is receiving more attention than
in the past. Leissa and Qatu [143] applied the Ritz method to study the stresses and
deflections in composite cantilevered shallow shells. Boitnott, Johnson, and Starnes
[144] calculated the linear and nonlinear interlaminar stresses for pressurized composite
cylindrical panels. The work in reference [144] also included a nonlinear failure analysis
of pressurized composite panels. Failure was found to occur near the corners of the
panels along the boundary of the panel. Research work on the stress distribution near
the stifTener intersections is lacking. The layerwise theory could easily be adapted to the
analysis of stresses near the stiffener intersections. Of particular interest may be the

interlaminar stress at the stiffener intersections. Furthermore, the layerwise theory is a
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quasi 3-D theory which overcomes the finite element aspect ratio problem of traditional

3-D elements.

1.2.3 Failure Mechanisms

Failure analysis of stiffened composite structures is a highly complex and sparsely re-
searched area. The failure scenarios for stiffened composite structures include: general
instability (global structural buckling), stiffener buckling (crippling), skin buckling, and
material failure. If the structure is designed to have postbuckling strength, then failure
will most likely be based upon ultimate rather than buckling strength. Spier [145] con-
ducted a failure/column buckling analysis of graphite epoxy stiffened panels using a
mechanics of materials approach. A comparison of skin buckling, stiffener crippling, and
structural buckling was made. Reddy et al. [95] performed an analysis based on me-
chanics of materials in their study of isogrid and orthogrid stiffened composite circular
shells. Their analysis considered general instability, rib (stiffener) crippling, and skin

buckling.

In order to determine the failure load of a stiffened structure some type of failure crite-
rion must be applied. Two approaches to failure may be used. The mechanistic (micro-
mechanics) failure approach deals with the failure of a composite material at the
constituent material (fiber, matrix) level. The micromechanics approach is difficult and
often the results are intractable except for simplistic models. The phenomenological

(macromechanics) failure prediction is developed by treating the composite as a homo-
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geneous material where the efTects of the constituent materials are detected only as av-

eraged composite properties.

The mode of failure of laminated composites may be by fiber yielding, matrix yielding,
fiber failure, delamination, or fracture. The first three failure modes depend on a con-
stituent’s strength properties. Delamination generally occurs in the form of cracks in the
plane of the composite, resulting from manufacturing defects, low strength of resin rich
regions, and high local stresses due to improper stacking sequence. Fracture is the result
of preexisting voids or cracks in the constituent materials. Macroscopic failure criteria

are based upon the tensile, compressive, and shear strengths of an individual lamina.

A myriad of literature exists concerning failure of composite materials. A survey of
macroscopic failure criteria applied to composite materials is presented by Sandhu [146),
Tsai [147], Tsai and Hahn [148], and Nahas [149]. Some of the more popular failure cri-
teria include the maximum stress criterion, maximum strain criterion, and quadratic
polynomial criteria such those proposed by Hill [150), Azzi-Tsai (151], Chamis [152],
Hoffman [153], and Tsai-Wu [154]. The maximum stress criterion and maximum strain
criterion are called independent mode failure criteria and thus there is no interaction
between modes of failure. The quadratic polynomial failure theories are mathematical in
nature and are basically empirical curve-fitting techniques. There exists considerable
failure mode interaction with the polynomial failure theories. The Tsai-Wu criterion is
a tensor failure theory which is invariant under rotation of coordinates and transforms
via known tensor transformation laws. None of the aforementioned failure criteria can
predict the mode of failure. Hashin [155] proposed a failure criterion which considers

four distinct failure modes - tensile and compressive fiber and matrix modes.
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Several authors have presented some relatively simple micromechanics failure ap-
proaches. Craddock and Zak [156] developed a theoretical model which accounts for
large transverse stresses in the plies (laminae) and permits gradual plastic yielding of the
matrix to failure. Sanders et al. [157] applied simple micromechanics failure models such
as microbuckling, ‘kink-band’ failure, layer shear, and various interactive modes for ap-

plication to composite aircraft design.

Initiation of failure is often determined via the first-ply failure analysis. Cope and Pipes
[158) conducted finite element analyses of composite spar-wingskin joints and ultimate
strength was predicted through application of Tsai-Wu, maximum stress, and maximum
shear failure criterion. Reddy and Pandey [159] conducted first-ply failure analyses of
composite laminates. The maximum stress, maximum strain, Hill, Tsai-Wu, and
HofIman failure criterion were used in their analyses. Kim and Soni [160,161] developed
an analytical technique to predict the onset of delamination in laminated composites.
Their work was extended by Brewer and Lagace [162] to develop a quadratic delami-
nation criterion. This criterion is an average stress criterion which compares the calcu-
lated out-of-plane interlaminar stresses to their related strength parameters. The

criterion showed excellent correlation with experimental delamination initiation stresses.
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1.3 Present Work

The literature review presented in the previous sections indicates that analysis of stfl-
encd composite shells is an area of extreme interest. The major emphasis of this research
is to develop numerical techniques to study the buckling, linear, nonlinear, and failure
behavior of geodesically stiffened circular cylindrical shells. The layerwise laminate the-
ory of Reddy (LWTR) will be extended to stiffened circular cylindrical composite shells.
Developments using the LWTR for shells will be applied using both a Ritz variational
technique and a finite element approach. Application of appropriate failure criterion

will be applied to the model in order to determine the appropriate failure scenario.

The present study was undertaken with the following objectives:

. Develop a layerwise Ritz variational method with discrete stiffeners using the
Lagrange multiplier constraint approach. Use this method to study the buckling of

axially, ring, and geodesically stiffened cylindrical composite shells.

2. Develop and verify a layerwise finite element algorithm for accurate prediction of
displacements and stresses in composite plates and shells. The stiffeners are to be
modeled as layerwise beam elements. Linear and nonlinear strain displacement re-

lations are to be considered.

3. Calculate the displacements, in-plane stresses, and interlaminar stresses in stiffened
cylindrical shells with emphasis on geodesically stiffened shells when the shells are

subjected to various loading conditions.
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4. Apply failure criteria to study the first-ply failure of geodesically stiffened cylindrical

composite shells.

The governing equations of stiffened laminated shells using a layerwise theory is pre-
sented in Chapter 2. Chapter 3 dcals with the development of the Ritz variational
method and the Lagrange multiplier constraint method. The finite element model, ele-
ment types, numerical approach, and finite element verification problems are presented
in Chapter 4. The results for several problems are described in Chapter 5. Conclusions

and recommendations are presented in Chapter 6.
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Chapter 2

Governing Equations

2.1 Introduction

The development of refined shell theories for laminated composite shells has been moti-
vated by the shortcomings of the classical lamination theory. The classical lamination
theory (CLT) as applied to shells is based upon the Kirchhoﬂ‘-Love hypothesis in which
the shear deformations are neglected. Consequently, first-order and higher order theories
were developed to account for transverse stresses. These theories provide improved
global response for deflections, natural frequencies, and buckling loads. However, these
theories which are based upon a continuous and smooth displacement field do not yield
good estimates of interlaminar stresses. Improved theories must be applied to model the
local behavior near stiffener intersections of stiffened shells because laminate failure
modes may depend upon the interlaminar stresses. The layerwise laminate theory of
Reddy (LWTR), which has been shown to work well for plates, will be extended to cir-

cular cylindrical shells. The basic equations for circular cylindrical shells using the
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LWTR will be presented in the next section. Also, included in the development will be

governing equations for discrete stiffeners.

2.2 Displacements and Strains for Laminated Shells

The LWTR is a displacement based theory in which the three-dimensional elasticity
theory is reduced to a quasi three-dimensional laminate theory by assuming an ap-
proximation of the displacements through the thickness. The displacement approxi-
mation is accomplished via a layerwise approximation through each individual lamina.
A polynomial expansion with local support (finite element approximation) is used in this
development. Consider a laminated circular cylindrical shell with N orthotropic lamina
having the coordinate system described in Figure 2. The displacements u, v, w at a ge-

neric point (X, y, z) in the laminate are assumed to be of the form (see Reddy [37))

N+

1

ux,p,2)= ) ulx, 9)ela) = ue!
J=1
N+

M50, 2) = ) vix, Noe) = v @
J=1
N+1

Wiy 2)= ) wix ) = e/

/=1

where N is the total number of layers (N+1 interfaces including the surfaces) and
uj, vj, w; are undetermined coefficients. The ¢/ are any continuous functions that satisfy

the condition through the entire thickness
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gO)=0forall j=1,2,., (N+1) (2.2)

In this development the summation convention will be used for repeated subscripts and

supcrscripts.

The approximation in Eq. (2.1) can be viewed as the global semi-discrete finite element
approximations [163] of u, v, and w through the thickness. The ¢’ denote the global
interpolation functions, and u;, vs and w; ar. the global nodal values of u, v, and w at the
interface locations through the thickness of the laminate. A finite element approximation
based on the Lagrangian interpolation through the thickness can be obtained from Eq.

(2.1). In this study a linear interpolation will be assumed and thus

! 1 2 k=1 k
u = UW, uzaug)auf),m,ukgug )=y
v = Vfl), v = Vgl) - V(Z), .y V- ng-l) - ng) (2.3)
w, = Wf'), w, = W§')= sz), vy W= ng-l)= u,flz)

where UM, Vi0, W™ represent the values of U, V, W at the i-th node of the k-th lamina

as displayed in Figure 3.

The lincar global interpolations are given by

(k=1) -
¢k(z)={¢2 (@), Z_1S2Sz (k=2,3,..,N+1) »

w(lk)(z). zkszszk+l (k=l|2’“'vN)

where yf® (i=1, 2) is the local Lagrange interpolation function associated with the i-th

node of the k-th layer as defined in Figure 3.
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The theory presented in this study will be based upon the circular cylindrical shell ana-
logue of the von Karman large deflection theory. This theory was applied by Donnell
[5] and assumes that the lateral displacement w is large enough that in plane forces and
displacements must be considered in the nonlinear form. The strain displacement re-

lations of the Donnell/von Karman type [5,63] are

2
dv w 1 { ow
o= Grrrr($)
-
3 0z (2.5)
£ = dv  Ow v
4 o0z dy R
fem QU 0w
5 0z ox
du dv ., Ow dw
£g =

where R is the radius of the circular cylindrical shell. The coordinated system used in
this analysis is defined in Figure 2. Upon substitution of Eq. (2.1) into Eq. (2.5) yields

the following relationships

0w 4 1 (0w 0w
€'=6x¢+2<6x¢). 6x¢l

v, 1 i1 0w ow,

cz-(—ay + R w,)q‘) + A b | % & (cont.)
do'

=W
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dz
do’ Jw,
5=y d‘f + 6x1 ! (2.6)

forallij=1,2,..,N + .

2.3 Displacements and Strains for Laminated Beams

The layerwise theory is extended to beams in a procedure similar to laminated shells.
Consider a laminated beam comprised of N orthotropic lamina having a coordinate
system described in Figure dc. The displacements u and w at a generic point (», , ) in

the beam are assumed to be of the form

N+

um 0= ) und(0) = ud'

J=1
N+1

W, = D win)¢() = we/

J=1

(2.7)

Here the u is the local displacement along the axis of the beam and w is the transverse
displacement. In this research the out-of-plane stiffness and subsequently the out-of-
plane displacement v is generated from the ratio of the out-of-plane beam bending mo-
ment of inertia to the in-plane beam bending moment of inertia. See section 4.5 for a
description of the out-of-plane stiffness generation. Torsional stiffness of the layerwise

beams is not inherently present in the layerwise elements, but this could be included if
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Figure 2. Cylindrical shell geometry and coordinate system.
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an assumed displacement distribution through the thickness of the stiffeners was made.
Including torsional stiffness would involve significantly more development for the beam
elements and is not included in this study. The importance of torsional stiffness in

layerwise stiffeners needs further study and will be left for future work.

The strain relations for the stifTeners are developed in a procedure similar to that of the
shell. The stiffeners are modeled as discrete structures and thus developments are made
for individual stiffeners. A description of the stifTener coordinate systems 1s provided in
Figure 4. Figures 1 and $ contain illustrations of the geodesically stiffened and axial/ring
stilfened shells respectively. The stifTeners are assumed to behave like beams. In addi-
tion, the displacement field is assumed to be similar to that of shells. See references
[132-137,164,165] for similar curved beam developments. The stiffener strain displace-

ment relations of the Donnell/von Karman type are

2
Ju 1 [ dw w
tm = 67]+2(6n)+R'

ow

o= 2 (2.8)
ou ow u

= o "o TR

Here the radius of the stiffeners R’, is developed from vector calculus and analytical ge-

ometry (see Figure 6) and is given by the following relation

, R +b?
R = R (2.9)
where
Stiffener pitch = 2nb (2.10)
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Here b is the pitch parameter as shown in Figure 6. For ring stiffeners b = 0 and

R’ = R and for axial stiffeners b = oo and thus R’ = oo.

Upon substitution .of Eq. (2.7) into Eq. (2.8) yields the following layerwise following re-

lations for the stiffeners

Ou | (0w aw, Wi
“w‘?{d’*z(and" g A
{
-, 39 (2.11)

_ M
ch—ul dC + a” ¢ R, ¢

forallij = 1,2, ..., number of beam interfaces.

2.4 Variational Formulation for Laminated Shells

The principle of virtual displacements will be applied to the shell and stiffeners sepa-
rately. For the shell, the principle of virtual displacements can be used to derive a con-
sistent set of differential equations composed of N constant thickness lamina. The

Principle of Minimum Potential Energy 6IT may be expressed in variational form as

M =6U+6V=0 (2.12)

Here U is the virtual strain energy (virtual work done by the internal stresses) and 6 V
represents the variation of the potential of the applied forces. The minimum potential
energy statement for the shell in terms of stresses and virtual strains caused by virtual

displacements may be expressed as
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Figure 6. Description of the radius of curvature for geodesic stiffeners.
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{0108) + 020¢; + 038¢;5 + a,0¢, + o50e5 + 060E4}dzdQ + 6V = 0(2.13)

-,
;. SRS

Nl

where ¢, 0;, 03, g4, 05, and os are the shell stresses, de,, de;, de,, Otq, Ocs and beg are the
virtual strains in the shell coordinates, h is the total shell thickness, Q denotes the total
shell area at the midplane, and once again 6V represents the variation of the potential
of the applied forces. The variation of the total potential energy in terms of the stress
resultants, displacements, and virtual displacements is obtained by substituting the strain
displacement equations (2.6) and integratir.g through the shell thickness. The variation

of the potential energy then takes the following form

odu dov odu ddv,
1 o0y 3 j I
oIl = I[M % Mz( 6y+R5)+M6( ay+ax)

+ Q1du+ 030y + Qléw ~ - Kidy

déw, dow, g 96w, Ow, (2.14)
K{ ox +K§ dy + M ox Ox

dow, Ow, ow, 9w ow, Jow
i (i 1 J e e
+ Mﬁ( ax oy + ax oy ) + M; 3 3 ]dxdy

+ oV

where the stress resultants, Mi, My, Of, 04, 04, K1, and K%, and the variation of the po-

tential of the applied forces, 6V, take the following form

Governing Equations 32



4L
2

A
. 2
M;_f o, 0'dz, M'= f haazj)lqb/dz, (@=1,2,6)

T 2

o

é

i i d
(04,050 = [ ¥ (05,0009 2 i

7

~l

(ST

(K, K3) = f (a5, 04)p'dz (2.150)

2

B'

A
2 ,A A
V= — f powdQ — f f h(Nnéu,,+N:6u,)dde
Q Q:_.

J‘J‘ A aéw,, - i déw, 58w \dzdC)
_h  m, + Qéw )dz

"n

for a linear prebuckling analysis & ¥ reduces to

5V = f [ +2N6( e R vl A ay 6y aQ (2.15b)

For the potential energy of external loads p is the applied pressure, IQ,, and 10, are the
applied in-plane normal and tangential forces respectively, and A?f,,, Aj{,. and QA are the
applied edge normal moment, tangential moment, and shear force respectively. For a
buckling analysis N, Nz, and N are the axial, lateral, and shear external forces respec-

tively acting on the shell membrane.

The cylindrical shell is assumed to be laminated of orthotropic layers with the principal
material coordinates of each layer oriented arbitrarily with respect to the shell axis. The

layer constitutive equations referred to the shell coordinates are given as
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< 2> - _12 _22 _23 —26 < 2> (2.16a)
03 Cis Gy Gy Gy ey
\"ty _El6 Ezo 6:us 666_ \56)

{04}_ Ces Cis {54} 2.165)
s Cas Css | les .

where C; are the components of the orthotropic stiffness matrix. The stress resultants

in terms of displacements is given by the following expression

¥.3 b
= [ o= [ @, (jmr2ne

a“j ov w ou ov
—+Dl2(_y+_>+DIJW+D|6< ) (2 l7a)

X
]
1
o
<

1 ok 0w Ow, + pik ow Owy i/ TR NN w, Owy
271N ax  ox 16 ax dy 2 712 5y ay

du v w du ov
7 /Y e fi
(2.176)
+_I_Dwzi‘:2_ Owy + ple aw/ Owy. S L e CY dw) Owy
2712 9x ox % "5x dy 272 6y
(2.17¢)

1 pue W 9w Owy Uk a‘”! Owy. 1 e 0w dw,
2 16 "9x ox | % ax gy T 2 7% dy dy
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2 2 (2.17a)

= ; Ow ow v, \ |

/ f
Q: = [D;j,iuj""Dé‘ ox +D45Vj+ <—5y—_T>

. _‘.a T
Q; = isty + Dhs —— 44"}"‘0”(_“1?> (2.17¢)

L] A
Y * G2 .
Q3 = f;h U3d_zd2 f_h (C3]€j) dz , ( Jj= l, 2. 3. 6)
2 2
6u av au av
b { J Jj /) Y ) ’ 17
Q5 [ﬁa ax+ (Qy R)+Daawj+ (6 6):) (2.179)

+-L pu 0w) dw, + Dl 2 ow, Owye + L oW dw,
278 3x ox 3 ox 6y 278 gy oy

A A
2 2
K{ = j_h 05¢ld2 = J. R (Cssss + C45£4)¢ dZ
f—z— 2 1 (2.17g)
6 ow v
] ]
K = | Ddsu + Dfs — ~ + Dy, + D! ( % "T)
r a aWj Vj 7]
K, = | Disu + DYy —= = +D44vj+D44 % "X | (2.17h)
du dv w ou v
Uk % yk{ Y |, Wi Uk Uk S% | OV
M [D ax +D,2< ay + R )+Dl3wk+Dl6< ay + 6x)
(2.170)

+_1_DUI¢I dwy ﬂ vkt Wi _a_WL L okt Owe 0w
2 7 dx ox % ox dy 2712 5y gy
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Ml = | pie S + DI D | e + D¥fw, + DI D, O
2 dy * y

12 5x R J x
(2.17))
Dljk/ 6wk 6w, ikl 5wk aW[ lDiﬂd awk ﬂ
2 2 "ox ox % ox dy 272 3y gy
Ju dv w ou dv
J_ e ik kK, Wi Gk k. V%
My [D,6 F + Dj <ay +— ? )+D36 Wy, + Dgg (6y + 6x)
(2.174)
l DU“ dw, 5“’1 ikl 5Wk 5“’: 1 i Ow, aW/
2 ox ox | 6 Tox 8y 2 Y dy ay
for all i,j,k,] = 1,2, .., N + 1 and where
A A
., 2 k 1 = k
Da{p J. " ¢p¢ '$d: Dgp = I " Caﬂ¢l¢/ ¢"dz
2 2
.2 A dcﬁ’
ki T = gkl 2 =
Diff = | Tt By - [P e, 2.18)

Nl

I . ,
DU = L. Copb'd/ ——dz, DY) -f Co g2

2

Note that Djs, D-Hp. D, and Dy} are symmetric in their subscripts and superscripts.

1
Daﬂ aﬂ' Dayﬂ - Dga

2.19
U" D’ = D:g - fg, etc. (2.19)

The coefficients with a single bar over them are not symmetric with respect to the
superscripts. The variational statement in terms of displacements is provided in Ap-

pendix A.
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2.5 Variatiohal Formulation for Laminated Beams

The variation of the potential energy for the beam along the beam length, L, may be

expressed in the following manner

L
6“ = J- {G,M(SC,M + Uccéccc + aﬂcés'l(}d’? + oV (2.20)
0

The three dimensional constitutive equations for an anisotropic body are reduced to that
of a one-dimensional body by eliminating the normal stress oy, the in-plane shear stress
o, and the transverse shear stress oy;. Similar procedures for the modeling of laminated
composite beams were employed by Bhimaraddi and Chandrashekhara [164] and more
recently by Kassegne [165]. The stresses o;;, an;, and oy are eliminated, but the strains
&4 Engs and gy are not eliminated. For a laminated beam the constitutive relations re-

duce to the following form

Tom Ch Cs o [tm

= =5 =5
aCC Cn CJ3 —0 CCC (2‘21)
O 0 0 Gyl \ex

where the components of the reduced orthotropic beam stiffness matrix, f‘;}. are ex-
pressed in terms of the original orthotropic stiffness terms, C;, and are expressed in the

following form
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— - CiCor — CinCos \— Ci1Cos = CiCon \—
o - T (2 2 ) (S % ).
22Ce6 — Cog C32Ce6 — Gy
- G (22 Jea (oG ).
12Ce6 — Cyg 3G — Cyg (2.22)
_ - CysCig — CoiCox \— CysCoy — CaxCoy \— '
C353 = C33+< 2—6 f 21%-66 >C23 ( 26 2 36 22) 16
C22 C66 - C26 C22C66 - C26
_ - C,s?
Cap = Cgg — =2
44 55 C44

Finally, the nonlinear variational statement for laminated beams in terms of displace-

ments may be expressed as

' - — 0w, . u u B) aw, B! u
= Y I S _ @t H _qY 4 _ D ] 44 )
oIl fg{[BMuj + 344 a” B‘A R B44 R’ R’ a', + R R (5“{)

; ! =,
[B;jl Ou) Bljl Wy anz = 0% W

R o PR R R R By

- Uk dw, a ow, 9
i 1 Bi LW 1 i O ow,
+ B33“:'/+ 2 R a" a” 2 13 a” a” ](awl)
2.23)
[ Bu w ow; 9 aé (
v 7 v, wy A puk T ow, Y
+| By, an + By, 7~ T Bisw + > Bii an on :,( n )
B du, Ow, w, Ow ow ow
Uk Gl ] itk We ] guk ©% Y iy ]
+ B” _a” —611 + 11 R a" + B” a” Wy + B44UJ + B“ —67]

_at Y 1 o 9% 0w dw ) dsw,
Bt T B Sy 5 T |\ ) (et SV

forallijk,l = L, 2, .., number of beam interfaces.

Here Q, represents the in-plane area of the beam elements and where

Governing Equations 38



3
2 P . — ,
By = f Cpt'ddz, Bl = L, Copd't/o*dz

7 2
h h
. 2 — . 7 dd7/
By = f ; Cupd'¢'p“d'dz, Bl = J.-n C5p¢l7z-dz (2.24)
7 2
Rk J‘-g— CS.0'e! dg* d BY j% s do' dd’j
0 = ), VG By = | G
2 2

Here h is the beam height and integration is made through the height of the beam dz.

Note that Bjs, 5{1}3, B}, and By}’ are symmetric in their subscripts and superscripts.

BU a‘ﬂ , BU = BU

2.25
By = Blg = BY = BY = BY e, (2:29)

The coefTicients with a single bar over them are not symmetric with respect to the

superscripts.

The potential of the external forces for a beam is given as

— 0w, 00w
5V, = j{ ,a”’ a"’ }dq (2.26)

for alli,j = 1, 2, ..., number of beam interfaces.

where L, is the length of the beam and F, is the force acting along the length of the

stiffener.
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2.6 Failure Equations

The various failure criteria were discussed in section 1.2.3. In this study, a macrome-
chanics based first-ply failure analysis will be conducted for some select cases. As dis-
cussed previously there are many macromechanics based failure criteria. The failure
analysis involves calculating the stresses and strains at a point in the structure and then
applying the selected criterion. These criterion include the the experimentally deter-
mined macroscopic material strength data. In this research work, the Tsai-Wu failure
theory is used as the working failure criterion. The Tsai-Wu criterion was selected be-
cause of its general character. The Tsai-Wu criterion has three distinct advantages: (1)
invariance under coordinate rotation; (2) transformations are made via known tensor
transformations; and (3) there exists symmetry of properties similar to those of the

stifTnesses and compliances. Therefore, the Tsai-Wu criterion was selected for this work.
The Tsai-Wu criterion is given by the following expression

Fo,+Fom21 i j=1,..,6 (2.27)

Here o, are the stress components and F; and Fy are the strength terms. The strength

tensor terms may be CXpl’CSSCd as

i~
| 1

£ = Yr - Yo (cont.)
1 1

h=z ~z
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_ 1
F22 YT}.C
1
F3 = —
33 R2
Fy = L
S2
Fooo L
5= (2.28)
1
F66 = ZTZC

1
VXX YrYe
1
VXrXcZrZc
1

NVYrYeZrZc

n
()
|
|
|- 0 |— 0|~

All other strength tensor components are zero. Here o), g3, 03 are the normal stress
components, g, gs, g¢ are the shear stress components, Xr(Xc), Yr(Ye), Zr(2Zc) are
the lamina normal tensile (compressive) strengths in the x, ¥y, z directions respectively,
and R, S, T are the shear strengths in the yz, xz, and Xy planes respectively. The values

for Xr, X¢, Yr, Yo, Zr, Z¢, R, S, and T will be given later in this research work.
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Chapter 3
Ritz Buckling Method

3.1 Introduction

In this chapter a method is developed to study the buckling of stiffened cylindrical
composite shells with discrete stiffeners using a closed form analytical solution. The
stiffeners are directly attached to the shell where the components of the displacements
between the shell skin and the stiffeners is accomplished via the application of the
Lagrange multiplier method. Many of the equations developed in Chapter 2 are appli-
cable to the Ritz buckling method derived here, but some simplifications are also incor-
porated. In lieu of layerwise beams, the Euler-Bernoulli beam theory is used in
developing the discrete stiffeners. The method developed in this chapter is applicable to
cross-ply and some quasi-isotropic shell layups. In this study, simply supported edge
boundary conditions will be assumed in order to apply the closed form solutions.
Equations (2.1)-(2.6) and (2.12)-(2.19) are applicable for the layerwise shell used in this

approach. The Euler-Bernoulli beam theory is presented in the next section.
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3.2 Euler-Bernoulli Beam Stiffeners

The governing equations for the Euler-Bernoulli beams are developed in a procedure
similar to that for layerwise beams of sections 2.3 and 2.5. The stiffeners are modeled
as discrete structures and thus the development of a generic stiffening element may be
applied to axial, ring, or geodesic stiffeners. The displacements for a stifTener using the
Euler-Bernoulli beam theory are given by the following relation

dw}

u=ul-{—= i=12..,T

on (3.1)

i
W= w

where u} and wj are the displacements for each of the T stiffeners. Here u is the local
displacement of the stiffeners. For ring stiffeners the u’s are replaced by v's. A de-

scription of the stiffener coordinate system is provided in Figure 4.

The Euler-Bernoulli strains for the stiffeners are developed from the displacements and

are given as

2
ou' aw! w! *w!
i _ s 1 s s s .
s,=c,_—an +—2 (_aﬂ ) +—=-{— i=12,..,T (3.2)

The definition of R’ was developed in section 2.3. Here { is the distance from the

stiffener centroid to the reference surface. The uniaxial stress-strain equation for the

stiffeners is

oi=Ef i=1,2,..,T (3.3)
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where g} is the stress in an individual stiffener, E! is the modulus of the stiffener, and ¢

is the strain in an individual stiffener.

The variation of the potential energy for the stifTeners may be expressed as

6N = 68U} + 6V} i=1,2,..,T (3.4)

The variation of the strain energy o Ui for an individual stiffener may be expressed as

.
vt = | { [ a;asw;}d,,
o i

4,

(3.5)

R S 2k St o 2
n n R an 5'1J
a2 254 (%)
fori= 1,2 .,T
where

® [ = moment of inertia of an individual stiffener about the reference surface (ie., {

0) and thus [} = Ji, + ({241,

¢ i = distance from the stiffener centroid to the reference surface.
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e L= lcngfh of an individual stiffener.

The variation of the external forces for the Euler-Bernoulli beam stifTeners is developed

from the potential energy statement and is expressed as

L aw! 35w ,
aV,‘=J;{+F,a—" Gy (4 i=L2..T (3.6)

where F is the force acting along the length of the stiffener.

3.3 Lagrange Multiplier Method

The procedure used in applying the fundamental mathematical principles of Lagrange
multipliers is described briefly in this section. The Lagrange multiplier method will be
used to constrain the discrete stiffeners to the shell surface. Proof of the validity of the
Lagrange multiplier method is provided in references [118, 119]. Al-Shareedah and
Seireg [120-122] successfully applied the Lagrange multiplier method to stiffened plates.
Phillips and Gurdal [123] applied this method in the stability analysis of orthotropic
plates with multiple orthotropic géodesic stiffeners under in-plane loadings. A de-

scription of the Lagrange multiplier method follows.

Let it be required to minimize a function of I variables x, x; ..., x;

Sx, x5, 00, xp) 3.7

Ritz Buckling Method 45



where the x's are not independent but are bound together by J independent constraint

functions A; such that

h,(x,, X3y eeey Xl) =0
hz(xl, Xz' ey xl) =0
: (3.8)

h_/(xl, X2. ceey x,) =0

Lagrange’s method of simultaneously minimizing f and satisfying the constraint func-
tions is to minimize a composite function L called the Lagrangian defined as
L(x, @) = X) + 0, 1) (X) + ayhy(3) + - + ash,(X)

=f3) + ) ahiF)

J=

(3.9)

where X denotes the vector of variables X1s X2, ... , X7 and & is the vector of undetermined
Lagrange multipliers a;, aj, ... » s The necessary conditions for fIX) to be a minimum

while simultaneously satisfying the constraints  are

aL(X, =)
ox;

dL(x, @)
da,

=0 i=1,2,..,I

(3.10)
=0 i=1,2,..,J

DifTerentiation of Eq. (3.9) results in the following set of equations

NH I

a
ax‘ J= J ax,

h(F) =0

=0 i=1,2,..,1

j=1,2,...J (3.11)
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Equation (3.11) is a set of (I + J) simultaneous equations for (I + J) unknowns
xand & The Lagrange multipliers may be used for variational type problems where the
variational statement is considered a functional similar to f{x). The Lagrange multipliers
may be used to constrain the displacements and or rotations of a discretely stiffened

structure.

3.4 Stiffened Shell System

In this study, the stiffeners are treated as discrete structures and are attached to the skin
using the Lagrange multiplier constraint technique discussed in the previous section.
See Figure 7 for a representation of a discretely stiffened shell showing the constraint
points. The variation of the total potential energy for the stiffened cylindrical shell may

be expressed as

OIT = 6Usyerr + 0Ustipr + 6 Vsuer + 6 Vemirr (3.12)

The virtual work for the shell was derived and is shown in Eqs. (2.12)-(2.19) and in Ap-
pendix A. The Euler-Bernoulli beam strain energy and potential energy was shown in
Egs. (3.5) and (3.6) respectively. For the buckling analysis used here only the linear

portion of the virtual work statement is applicable and thus is given as

ddu ddv, dduy, dov,
Y Qe R ! ! 1 i t
oo [ (22 s 280
aéw,

dy

M ox ?-*- N6< ox dy + dx dy M oy dy a

26
+ Q{éu, + Q-_fév, + Q;éw, - _;' K;6V1+ K: _a% + K{
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. ZT: f“" £k 4k au,k + wf 6611," + 6wsk + Erpk azwf 625wf
0 TR\ on R an R $o on’ on’

k=|
_ 3wk [ asuk  swk _ awk [ aut Wk
_ngj‘Efa;< = | = TRk —— —+—— ] (3.13)
"

on R on? on R
— 0wt oswk
~k I 5
G o }drr

forij=1,2,..,N+ landfork = 1, 2, .., T (number of stiffeners).

The definitions of Mi, Mi, Mi, O, Qi, Qi, Ki, Ks, N,, N,, and N are provided in
Eqgs. (2.15) and (2.17). The development presented here is for specially orthotropic cyl-
inders where .as = Cy = Cy = Cas = 0. However, when the values of
Cis, Cas, Cis, and Ces are small such as the case for certain quasi-isotropic materials
then the layerwise Ritz method should provide reasonable results. This is demonstrated

in the results presented in Chapter 5.

For a buckling analysis we have

N, = iN,
N, = iA,
Ny = AN,
Ff = APt

(3.14)

where 1 is the minimum buckling eigenvalue.

We have

. 101 = -], 1?!; = 0, 106 = 0, buckling under axial compressive load.

Ritz Buckling Method 48



. AA'I =0, N = -1, /\A/(, = 0, buckling under lateral pressure.

3.5 Buckling Solutions and Equations

The Ritz method will be employed for this buckling analysis. The results may be com-
pared to other solution procedures like those described by Jones [90,91], Reddy [37], and
linear finite element methods. The global buckling solution of stiffened circular cylin-

drical shells consists of solving Eq. (3.12) such that

61 = 0 (3.15)

In order to solve the equations using a Ritz variational approach, a solution must be
assumed. In this study, simply supported edge conditions will be studied. The edge

boundary conditions for the shell skin and the individual stiffeners are (see Figure 2)

w=v=0atx=0,1L (3.16)

The following solutions of the Navier form which satisfy the boundary conditions are

assumed:

Shell Skin

w= U™ cos(a,x)cos(By) i=1,2..,(N+1)
w= V" sin(,) sin(f) ; an=SF, B=% (3.17)
w, = W sin(a,,x) cos(f,y)

where U, V™, and W™ amplitudes are to be determined for each mode (m, n).
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Axial and Geodesic Stiffeners

At 12T
; (3.18)

u;= U;kcos(akx) ;o=

wi = WX sin(a,x)

Ring Stiffeners

V;= V:.l Sln(ﬁ[}’) ; ﬁ!g_é_’ i= 1’ 2' e y (319)

wp= W} cos(fy)

where Uk (Vi) and Wi (W) amplitudes are to be determined for each stiffener mode k
(1). For axial stiffeners the » axis is along the x direction and for ring stiffeners the » axis

is along the y direction.

Substituting Eqgs. (3.17)-(3.19) into the buckling expression, Eq. (3.13), and integrating

over the regions (L, = 2nR) below

L
oM = j (0UspeLL + 0 VsueLy) 4Q +J (6 Ustipr + 6 VsTirs) dn
a 0 (3.20)

LoL L
= J. J; (0Usner + 0 VspgLr) dx dy + J‘o (6Ustipr + 8 VsTigE) dn
0

yields the following expression
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LL,

0 =9I = T{(Dnam + DY, + DY $) U™ ~ amBa(DYy Dgs) V™"
L
_am( 1‘{ DY, + DY, 5‘5)}50,""4%{ amBa(DYy + DU

(D“a + DIy} + Dl (Bla+ D) 45 ot o
+ﬁ,,(—022+ 1]z D, + D, ;)vz/,”'"}av,'""+—4“-{—am(‘]’3
- DY + }{ D{fz)U,'""+B,,(iD” +

: (3.21)

+(D§'5a,,,2+Dij4 "2+7€T
+,1(A“/,a 2+ Mg )W W

Ll Wlk
+Z {EA(deUl - Q=5 R —c,ﬂk W‘) lj/k
im}

; [E;zga: ik _ y,A;z;( I W"‘)

llt
E;A ( a Uk 4 —— )+zﬁ;ak’wi*]awf”}

For ring stiffeners replace Ui* by Vit, Wik by Wi, and a; by (- 8)).

3.6 Constraint Equations

In this part of the study the displacements u and w of the shell and stiffeners will be
constrained (v and w for ring stiffeners) to attach the stiffeners to the shell skin. The

compatibility of displacements is imposed at a finite number of points along each
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stiffener (see Figure 7). The compatibility of displacement equations may be expressed
as

Axial and Geodesic StifTfener Constraint Equations

€p = U— uf = U,’"" cos(a,,,xjp) cos(ﬁnyjp) - U!k cos(aknjp) =0
v

fp =W = W™ sin(@nx;,) cos(Bay;p) — W2 sinayn;,) = 0
i=1,2,.. (N+1) (3.22)
j=1,2,..,T
p=12.P

Ring Stiffener Constraint Equations

gp = =i = V7" sin(@mx,) sin(Bu,) = V' sin(By,) = 0

hp = wi—wy = W sin(apx;,) cos(Buyp) — WY cos(Bny,) = 0

i=1,2,. (N+1) (3.23)
j=1,2..,T
p=12 . ,P

Here the subscript p represents the number of constraint points for P total constraint
points along the stiffeners. A set of Lagrange multipliers may be developed where one

multiplier is required for each constraint condition. The equations take the form

L= ypep+uplpt+dpg,+ Yiphyp (3.24)

where vy, up, ¢, and Y are the Lagrange multipliers and L is the set of Lagrange mul-
tiplier equations. The system of Lagrange multipliers L may be added to the potential

energy I1 to form a variational functional I such that
I=T1+L (3.25)
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In order to minimize the functional, the variation of | may be set equal to 0 so that

0l = 6M+6L =0 (3.26)

The minimum potential energy 6IT has been defined previously. The variation of the set

of Lagrange multipliers is

OL = dyjpep +y),6 U™ €OS(@mx;,) COS(Bpyp) = v, 6 UL cos(an,,)
+ Okipllp + B W™ sin(apx,) cos(Buyyp) — 8 W sin(a,,)
+ 08,58 + ;6 V™" sin(a,x;,) sin(By;p) — ¢,6 V4 sin(B,n,,)
+ 0¥k, + Vo W sin(a,,x;,) cos(By),) ~ V0 Wf’ sin(B,1,,)

(3.27)

From Eq. (3.26) 6/ = 0 so the individual components must therefore be 0 and hence

SU™ = 0 oy = 0

oV =0 oup = 0

SWM = 0 5y = 0

U =0 8¥), = 0 (3.28)
st = ¢

6V =0

swl' = o

Eq. (3.28) yields 11 sets of equations which may be solved. If no ring stiffeners are
present then 9 sets of equations must be solved. Similarly, if no axial or geodesic
stiffeners are present then 9 sets of equations must be solved. Carrying out the oper-

ations of Eq. (3.28) yields the following sets of equations.
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LL,

UM —={(Df\ay® + DUB,* + DL)UM™ = a,,8,(DYy + DY) V"
_ (3.294)
- am( R D + D Elsjs) l‘ij"} + yjP COS(amxj'p) COS(Bnyjp) = 0
LL -
5V[mn: 'TC{—amﬁn( ]2+D )ljjmn (Dé6a +Dzz n D&-‘}T(EA
~/ | [} m 1 i .29
+ ) + = DUV + (D + o Dl + D] D/)Wj"’"} (3.29)
+ &p sin(a,x;) sin(By),) = 0
LL
SW —4—‘{-%(%1){@ + Dl - 5”)U
1 1
+ﬂn(? 2”’+7DU+ - D} )V”‘
(Dssa + Dlsat,,” + DB, + R Dzz + % DY, (3:29¢)
+ % Dj + 5.;]3) W+ 1(&1%2 + &2ﬂn2) ijn}
+ Wy sin(a,,x;,) cos(Byp) + ¥p sin{a,x;,) cos(Byyp) = 0
e, Ls if 2 W, 3
sULE: —f{ﬁixz,(ak U - ap == — T W, )}—v,,, cos(an,) = 0 (3.294)
6W;k {E’I,ak W”z E‘rA ( k’U:.k—-kzrtsz:k)
. (3.29¢)
EIA aU"‘+ W + AFa 2wl _ sin(a,n,) = 0
R X R sk e Hip x")p
sVt = {E‘A (ﬂf Ve + ﬂ,—R.— + 087 W")} — ¢yp sin(Bpnyp) = 0 (3.29/)
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{

oL o . .
s S { ettt + AT (92 V4 + 2 i)

£ i (3.29)

+ —(B;V" >+ AEp} W“} Vjp cOs(Bar ) = 0
0y U, cos(az,,,xjp) cos(B,y,) — v cos(xyn;,) = 0 (3.294)
Sty W Sin(@px),) COS(Byp) — WK sin(a,) = 0 (3.294)
81 VI sin(ayxyy) sin(Bay,) — V4 sin(Ba,,) = 0 (3.29))
S¥pt W™ sin(@px,,) cos(Buyyp) — WA cos(Bay,) = 0 (3.294)

3.7 Shell/Stiffener Load Distribution

3.7.1 Introduction

The appropriate prebuckling load distribtion as applied to the shell (skin) and the
stiffeners is essential for proper analysis of the stiffened shell structure. In the smeared
buckling analyses the skin and stiffener properties are averaged to form and equivalent
structure and therefore no prebuckling load distribution is necessary. However, for dis-
crete structures the proper distribution of loads applied to the skin and the individual
stiffeners must be obtained. The approach taken here for the prebuckling load distrib-
ution involves using classical lamination theory (CLT) and a smeared load distribution
whereby the stiffeners are considered to be smeared for the sake of calculating the ap-

propriate prebuckling load distributions only similar to the approach used by Phillips
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and Girdal [123] in their study of stiffened plates. The stiffeners will be assumed to carry
only forces along the length of the stiffener. The development of the constitutive

equations presented here follows the approach of Jones [166].

3.7.2 Shell Constitutive Relations

Using CLT for the shell/skin, the stress strain relations in the principal material coordi-

nates for a 2D laminate are

g n Qu o &
92 ) = 1Q2 @n O & (3.30)
912 0 0 QO Y12

Here the Q; are the reduced stiffnesses. If the coordinate system is transformed then the

stress-strain relations are given by

Ox Ou 0 O Ex
o ) = 10, O O Ey (3.31)
O xy Ois Oz Ose Vxy

The QJ are the transformed reduced stiffness terms. Using the Kirchhoff-Love hypoth-

esis the displacements u and v within a laminate may be expressed as

0 ow’
u=u —z Ix

, aw® (3.32)
v= v —2 3y
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Here w°, v, we are the displacements at the midsurface of the shell. The subsequent

strains may be expressed as

= ox dx PR
e = ﬂ avo + wO s 52 (]
y = - v 2
oy 9 R dy
_ du ., dv ou’ | av° 3tw®
Yy oy + ox dy + dx 2 Oxdy
or
CX cz KX
ny yiy KX)‘

where the middle surface strains are

r N\
C._o\ ou’
x ox
0 .a"_o .‘io_ 6v°>
COREE2e =5--
Y;y ou’
~ ¥ J

and the middle surface curvatures

\
Kx"\ r't'izwo
ox?
o)
Ky = - ayz
w°
X
w/ dxdy
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(3.35)

(3.36)
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Substituting the strain relations (3.34) into the stress-strain relations (3.31) the stresses

in the &* layer of the shell may be expressed as

- - = 0
Tx On G Qe Ex Kx

~ -~ ~ o
gy = | Qn Qun QO g, ) + 24K (3.37)
Oxy) k Qe Qs Des ) Vay Ky

The resultant forces and moments acting on the shell laminate may be obtained by in-
tegration of the stresses in each layer (lamina) through the laminate thickness. The re-

sulting expressions are

N; h ox N ax
" )

N - j o Yd: = ) o, ¥ dz (3.38)
Ni -Th c k=151 g

xy xy, xy) k
M; h ax N ax

5 F %

b ) = .[;. oy Yzdz = o, ) zdz (3.39)
M;y T axy k=i 2= ny X

where z; and z,_, are defined in Figure 8. Upon integration through the laminate the

following expressions result

$ s s s s 5

Ny Ay A, A Ex 1 12 31:6 Kx
4 s s [} (] '

Ny = |Ajy Ay Ay &y + | B, By By Ky
5 5 5 s 5 5

Ny, Ale A Ase | Uy By By Bgs| \xx
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4] 5 s 5 b $ 5
M, n 12 16 Ex i 2 Dig Kx

My )= | B B Bi|{& )+ [Dh D5 Di|{«x, (3.40)
A{;y Te By Bgs Yxy \Sc Dy Dgs Kxy
where
I
2 -
(4, B}, D) = f-h(QU)k(l,z,zz) (3.41)

Nl

The superscript s denotes that these are shell(skin) constitutive relations.

3.7.3 Axial Stiffener Constitutive Relations

The efTective stiffener spacing /, over which the influence a particular axial stiffener has

upon the structure is described in Figure 9 and is given by the expression

2zR

b=

(3.42)

where N, is the total number of axial stiffeners. The linear strain displacement re-

lationship for axial stiffeners is

g Ut W
x ox ax?

(3.43)

where ¢¢ is the smeared axial stiffener strain and u and w® are the respective displace-

ments of the axial stiffeners. The stress strain relationship is given as
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Figure 8. Geometry of an N-layered shell laminate.
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a a 6u" 5lwa
oy = Ee, = E, Ep -2 (3.44)

where o¢ is the smeared axial stiffener stress and E, is the modulus of the axial stiffeners.
The total force in the stifTener is calculated by integrating the stress distribution in the

stiffener over the area, A4,, and is expressed as

F’=IaidA =jE a“a—zazwa dA
0T 0 e axt | ¢ (3.45)

= E Az + E, Az x,

The force resultant, ¥, is then calculated by distributing the total stiffener force F2 over

the stiffener spacing /, and is written as

Na = i = EaAa du’ + EaAaz.a [_ azw‘ }
x l Iy Ox l 2
X X -x ox (3.46)
Eq,A, oL E, A2,

L Iy x

The moment resultant Mg, is calculated by multiplying the force resultant Ng, by the
distance Z, from the neutral axis to the centroid of the stiffener at which the force acts.
Here it is assumed that the forces act at the centroid of the stiffeners. The moment re-
sultant is then

F:z—a EaAaz.a 0 Ea’a

M: = = Ex + Kx (3'47)
IX IX IX

where the moment of inertia /, is
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I =1L +3%4, (3.48)

The set of constitutive relations for the axial stiffeners becomes

NJar = Aflez + B;IlKX

3.49
M? = Bl\e2 + Df\x, (3-49)

where

B, = == (3.50)
X

3.7.4 Ring Stiffener Constitutive Relations

The effective stiffener spacing 4, over which the influence a particular ring stiffener has

upon the structure is described in Figure 10 and is defined by the relation

= L
b= ¥ (3.51)

where L is the length of the cylinder and N, is the number of ring stiffeners. The linear

strain displacement relationship for ring stiffeners is
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o= QL (3.52)
y 5y " R 3

where ¢ is the smeared ring stiffener strain and v* and w* are the respective displacements

of the ring stiffeners. The stress strain relationship is the given as

ol = Egl = | 2L w0 W (3.53)
¥ cEy oy TR 3 '

where of is the smeared ring stiffener stress and E, is the ring stiffener modulus. The
total force in the stiffener is calculated by integrating the stress distribution in the

stiffener over the area, 4., and is expressed as

F=jach =‘[E avc+wc—262wc dA
Yool U vy TR at | ¢ (3.54)

= EAsy + EAZx,

The force resultant, N,, is then calculated by distributing the total stiffener force F¢ over

the stiffener spacing /, and is written as

F ¢ 7 2 ¢
M- ECAC[_@_M ]+EcAczc[_aw}
y

P) ]
y Y 7 % (3.55)
EA, o EAZ
= 1y £ + Iy Ky

The moment resultant M, is calculated by multiplying the force resultant Nt, by the

distance Z. from the neutral axis to the centroid of the stiffener at which the force acts.
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Here it is assumed that the forces act at the centroid of the stifTeners.

sultant is then

Frz, EAZ El
¢ yec e o cle
My= [y = Iy e, + Iy K,

The set of constitutive relations for the axial stiffeners becomes

[ c
N;. = Azzcy + Bzzxy

M; = Bje, + D5y,

where

E

Azcz = ;Ac
ly

EAsz

B, = Cfczc
y

Dy = e
y

Ritz Buckling Method
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(3.57)

(3.58)

(3.59)
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3.7.5 Geodesic Stiffener Constitutive Relations

Described in Figure 11 is the coordinate system for the geodesically stiffened shell and
the definition of a single geodesic cell. The effective circumferential length / is the cir-

cumference divided by the number of cells per shell circumference such that

(3.60)

where N, is the number of geodesic cells. The cell length is given by L,. The strains in

stiffener coordinates are

U L
n on R % o’
2
e = %‘: -3 "a;f (3.61)
ol 0

Vo = Y + on

where ¢, is strain along the stiffener axis, g is strain transverse to the stiffener axis, Yt
is the shear strain, and uf and w# are the geodesic stiffener displacements. See Figure 4

for the stiffener coordinate system.

The stiffeners 1 and 2 of Figure 11 are oriented at angles ¢ and — ¢ respectively from
the y axis of the shell. Since the stiffeners are not aligned with the shell coordinate sys-
tem, the values in the local coordinate system aligned with the stiffener axes must be
transformed to the shell coordinates. The strains in the local coordinate system aligned
with the stiffener can be determined using the strain transformation relations by Jones

[166]. These are
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& s'¢ ¢ spco £x

& ) = i 52 - spco £ (3.62)
Yns —2s¢pcdp  2spco c2¢ - s2q,‘> Yxy
where
s¢ = sing
cd = coso (3.63)

The axial strain component for stiffener #! of the unit cell at angle + ¢ yields

g = sin2¢ex + cosqucy + sin ¢ cos PVxy \
(3.64
= den:Jr + czd)ey + spcdyy,
The axial strain component for stiffener #2 of the unit cell at angle - ¢ yields
.2 2 :
€y = sin’(— @)e, + cos’( — P)e, + sin( — @) cos( — @)y
? g y ” (3.65)

2 2
= s'pe.+ ¢ ¢, — spcoy,,

The stiffener axial forces F and F; may be found by multiplying the strains ¢; and ¢; by
the stiffener elastic modulus E, and integrating over the area of an individual stiffener

area A,. This results in the following expressions

F, = E, f (e, + c*be, + spedy,,)dd,
A
! (3.66)
F, = EgJ. (32¢cx+c2¢ay-s¢c¢yxy)d/!,
Al
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Solving for the force F; along the circumferential edge involves resolving F, and F, into

components along the x direction as indicated in Figure 11.

F} = Fising + F, sin ¢
= Eg[f (s3d>ex + cz¢s¢cy + s2¢c¢yxy)dAg
Al

3.67
+ L (sJaSc,,r + c2¢s¢ocy - 52¢C¢7ry)dAg] ( )

= 2EgL (53¢>sx + c2¢s¢ey)a'Ax

The force resultant, Mg, distributed over the circumferential length is calculated by dis-
tributing the force F, over the length /. Distributing the force Ffover l; and carrying

out the integration of Eq. (3.67) yields (constant cross sectional area)

2E,4, 2E,4,

N = ! st)eX + 18 c2¢s¢cy
_ _ (3.68)
2E,4,7, 2E, 4.2, 2
+-1_s ¢xx+—1—c ¢sdx,
3 g
where for a constant cross sectional area
Z, = L ZdAx (3.69)

A similar procedure is used to calculate the force resultant N§ along the lengthwise edge

and produces the following result
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2F.A4 2E. A4
N = £ 52¢:c¢cx+ £ ¢ c3d)5
y L, L, y
J2EAS A (3.70)
L, * L, y

To determine the shear force resultant, the forces tangential to either the circumferential
or lengthwise edges will produce eigenvalue results. The tangential force components
along the edge are F) cos ¢ in the positive y direction and F, cos ¢ in the negative y di-
rection. Substituting for F; and F; of Eq. (3.66) yields

Fj, = Fycos¢ — F, cos ¢

Eg[ L (s"dcde, + e, + spcidy,, )dA,

‘L,‘

= 2E, L (Psty,y)dA,

3.71
(szqﬁcc,bt:x + c3¢:y - sqbczd)yxy)dAg:, ( )

Distributing the force Fy, over the length /, and integrating Eq. (3.71) yields the shear

force resultant

2E,4 2E, A7
NE, = — c2¢s¢yx,+—gl-ﬂc’¢s¢x,, (3.72)
8 4

The loads acting upon the stiffeners are offset by an amount Z;. Thus, moment result-
ants are introduced into the problem. The resultant moment M§ may be calculated by

multiplying Eq. (3.67) by z and distributing over /, which yields
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Mﬁ = ; = szfig[sjqﬁex+czdasdn:y]zd/{g
2E, Az, 2E, 4.7,
= — =L e, + y . cospe, (3.73)
2 2
2E,I 2E, I
+ Ig 2 53¢xx+ lg £ c2¢s¢xy
2 g
where
I = L 2ddy = I8 + 3,24, (3.74)

Similar procedures will produce the moment resultants Mj and Mg, These moment re-

sultants are

2E, A 7 2EA 5
M = 8L £ stpcde, + gL £ c3¢ey
s s (3.75)
+ 2y s2¢>c¢x + 255y Sox
L, =L, y
2E,A 3 2E,A 3
ME, = ’,—’Z'czfﬁswxy* . £ 2p5pe, (3.76)

8

The constitutive equations for geodesic stiffeners are given as

0
N a5 45 o ][ B B, o] [
(/]
Ny D= |afy 4t o |08 Y+ B 0%
NS, 0 0 A% 0 0 B (xo
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£ 0
My B, B, o Ex D}, Df, o Kx
My b= I8 B, 0 |(S Y+ o5 by 0 [{x) @)
M, 0 0 Bsjlyl 0 0 D] (kv
where
2E.A 2E A3
Afl = 1g 53¢’ 21 = igzg 524’ ¢
8 g
2E A 2E. A4
Ay = = Elhsp B = LG
e 7
2E A 2E A3
Agl = g £ 52¢C¢ Bgo = gI i 02¢ ¢
g
2E,A 2E,]
s s 1.78)
. 254, 2E, 1, Q.
A66 = = ¢S¢ D{z = 7 c ¢S¢
b 3
2E,A73, 21,
B'xgl = g[ £ 3¢ D‘fl = ¢C¢
2 by
2E A 7 2E.1
B, = x[ 2%g Pésé DI, = 1: g 2
2 2
2E I
Dfs = ’¢sp
by

3.7.6 Skin/Stiffener System Constitutive Equations

Using the principle of superposition the force and moment resultants for the stiffened

structure are
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Ny = Np+ Nf+ N8 My = Mz + M2+ M
N, = Ny+ N, + NS M, = Mj+ M, + M} (3.79)

Ngy = Np, + NE, My = M, + M,

The stifTness terms (A, B, D) are then

Ay = A+ A7+ 45 By = By,

Ay = Aj + 45 By, = By + By, + B,

Ajg = Ajg Bys = By + BEs

Aye = Az Dy, = Dj, + D}, + D},

Ay = Ay + 45 + 45, D, = D, + Df, (3.80)
Ass = Asg+ Adg Dy, = Dy

B,y = B, + B, + B}, Dys = Dy

B,; = B, + B}, Dy, = D3, + Dy, + Db

Bis = By Dg = Dgg + Dfs

It is assumed that the skin and stiffeners have identical strains. The constitutive

equations for the shell (skin)/ stiffeners are:

]
Ny Ay A A | [Ex By, By, Big| [«
N, = |A; Ay Ay 5; + | Bia By By Ky
Ny, Aig Ay Ags Yy Big By Bgs| |y

(4]
M, By By, By [& Dy, D, Dy [x«
My, » = By By By|{% )+ |Dy Dy Dyl (x, (3.81)
M, By By B Vay Di¢ Dy Dgs| |Ky
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3.7.7 Loading Conditions

Four different loading conditions will be considered for the solution of shell/stiffener
prebuckling load distributions; axial compression, pressure loading, applied shcar
(torsion), and applied end shortenings. In this study only buckling due to axial com-
pression and/or pressure loading will be considered. The other two loading conditions,
torsion and applied end shortening, are included for completeness and can be included
in future work including calculating the prebuckling load distributions for a finite ele-
ment analysis. Load distributions for combinations of the above loading conditions such
as for example axial compression and pressure loading may be obtained via the super-

position of two or more load conditions.

3.7.7.1 Case 1 - Axial Compression (Applied Nx)

For this case it will be assumed that the prebuckling N, = N, = 0. Further, due to the
offset loads acting at the stiffeners’ centroid, a resultant moment is developed. An ap-
plied N, may be reacted by either axial or geodesic stiffeners. Thus, the resulting mo-

ment is

M, = 7,N? + 7,N¢ (3.82)

The resulting offset moment in terms of strains is

My = Z(Al1ex + Bixy) + (A1 + A%el + Bfx + Biix,) (3.83)

Substituting Eq. (3.83) into Eq. (3.81) reduces the constitutive equations to

Ritz Buckling Method 76



N, [—A,, Ay A Ex B,y By By Kx

0 = |Ain Ay Ay 5; + | Biz By By Ky

0 | Aie A Ags Yoy Big By Do | |y
M, (B, By, B (& Dy Dy Dif [

0) = |82 By Bu|{& )+ |Dy Dy Dy|{x, (3.84)
0 | Bis By Bee Yy Dig Dy Dgs| | Ky

The set of equations, (3.84), will be solved using a Gauss elimination procedure for

€ £ Y3 Kx, Ky, K. The solution for the skin force resultants is then
5 s 0 s o0 s 0 5 Ay 5
NX = All€x+A125y+A16)'xy+Bllxx+Blzxy+Blé"y

Ny = Alsex + Aty + Axevay + Bisk, + Bijk, + Bygx, (3.85)
N;y = Afo&i + A;6€; + Age}’iy + Bf6xx + B;,sxy + + Béﬁny

The resultant force in the axial stiffener is

Ny = Afiez + Bk, (3.86)

and the force in each axial stiffener is

Fy = LN} (3.87)

The resultant force in the geodesic stiffeners is

N = Afe5+ A%ey + B, + By, (3.88)

and the force on the the geodesic stiffeners is then
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L
Fl =F2= 2S¢ = 25¢ ) (3‘89)

It is assumed that ¢he ring stiffeners do not carry any loads when the shell is subjected

to axial compression so F; = 0.

3.7.7.2 Case 2 - Pressure Loading (Applied Ny)

For pressure analysis the value of N, = —pR where p is the external pressure. Ifinternal
pressure is applied then N, = pR. For this case it will be assumed that the prebuckling
Nz = N; =0. Due to the offset loads applied to the stiffeners this results in an applied
moment resultant. This moment resultant is created because of the offset force result-
ants acting on the ring or geodesic stiffeners acting at the centroid and may be expressed

as

M, = ZN; + z,N® (3.90)

The resulting offset moment in terms of strains is

M, = z{A5¢; + Bjyx,) + 7(45,¢2 + Ade) + Bk, + Bj)x,) (3.91)

Substituting Eq. (3.91) into Eq. (3.81) reduces the constitutive equations to

o

0 Ay A Agl (& By, By, Byl (k.
Ny )= [Ay Ay Ay & Y + | By By, By | { x,
0 Aig Ay Ags Yay Big By By | |xy
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, ,
By, By, Byl [« Dy, Dy, Dy| [k,

0
‘My = BIZ 322 B26 Ej + Dll DZZ 026 Ky (392)
0 Big By DBy Vay Dig Dy Des | Ky

The set of equations, (3.92), will be solved using a Gauss elimination procedure for
% €, Y%y Kx Ky, Ki. The solution for the skin force resultants may be found from Eq.

(3.85). The resultant force in the ring stiffener is

Ny = A5 + Bigx, (3.93)

and the force in the ring stiffeners acting at the ring stiffener centroid

Fy = LNy = L(A5¢) + B5x,) (3.94)
The resultant force in the geodesic stiffeners is

Ny = abiez+ abe) + B, + Biyx, (3.95)

and the force on the the geodesic stifTeners is then

F LN
Fi=h=52 =0 (3.96)

The axial stiffeners carry no circumferential load and hence F¢ = 0.
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3.7.7.3 Case 3 - Shear Load (Applied Nxy)

In this case a state of applied shear loading, Ny, exists. For this case it will be assumed
that the prebuckling Ny = N, =0. The applied offset moment resisted by the geodesic

stiffeners is then

My = N, (3.97)

The resulting offset moment in terms of strains is

My = Z}(Agoviy + Bége’cxy) (3.98)

Substituting Eq. (3.98) into Eq. (3.81) reduces the constitutive equations to

0 Ay Ay A | (& By By By| [k,
0) = (42 An Ayx({& Y+ | B, By By Ky
Ny, Ay Ay Ags Vay Big By Bee | LKy
B, By By] (% Dy Dy D] (k.
0 ) = |Ba By By|(& )+ |Dy Dy Dy Xy (3.99)
M,, Big By By Yay Dyg Dy Deod Ky

The solutions of Eq. (3.99) for &g, ¢, Yo Kx Ky, and kp, may be substituted into Eq.
(3.85) to find the skin resultant forces. The solution for the skin force resultants may
be found from Eq. (3.85). The load distribution in the geodesic stiffeners may be found

from the following expressions

Fry = LNGy = ly(Ady%, + Bk, (3.100)

Ritz Buckling Method 80



ald (3.101)

The axial and ring stifTeners carry no shear loads and hence F¢ =0 and Fr=0.

3.7.7.4 Case 4 - Applied End Shortening

In this case the strain, ¢, must be calculated from the applied end displacements A such

that

2= 4 (3.102)

The solution will involve solving for N, as an unknown rather than 2. It is assumed that
in the prebuckling state N,, Ny, M,, and M,, are all zero. The offset moment will be
given by Eq. (3.83). Substituting Eq. (3.83) into Eq. (3.81) and rearranging to solve for

N; as an unknown with €2 known yields the following equation

— Anex =1 Ay A [N B, By; By} [k«
o

— A ) = 0 An Axl|\Y + | By By By|(x

— Ajstn 0 Ay Ay | % By By Bss| | xy

- (Bll + z-aAlgl + z-gAlgl)C; 0 (Bn - Z-gAfz) Bm Ex
— Bye; =10 By By |{ &
— Bigts 0 By Bes | \ oy
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(D1 = 2B, - ,Bf)) (D, — 7Bh) D | (.
+ D,, Dy, Dy | ( x, (3.103)
Dl6 026 D66 KX}'

The set of equations, (3.103) will be yield ¢g, cﬁ, Y2 Kz, Ky, Kr. The solutions and the
known &2 may be substituted into Eqs. (3.85)-(3.89) to calculate the appropriate forces

in the skin and stiffeners.

3.8 Governing Equations and Final Form

The set equations of 3.29 represent 11 sets of equations which may be written in matrix

form as

(Kixn (A} = ALM, 4] (3.104)

The nonzero elements of the stiffness and mass matrices of Eq. (3.104) are provided in
Appendix B. The stiffness matrix of Eq. (3.104) is sparse and thus in this study the
eigenvalue problem will be solved in terms of the shell (skin) displacements U, V, and
W. The Lagrange multipliers, Yips ips Py and Y, are eliminated from the problem by
expressing these terms as functions of U, V,and W. After reducing the 11 x 11 set of

equations the following eigenvalue problem results

(Sul 8] S]] [(» (0] (o] (0] {U}
[Si2] [Sp] [Su]| (V) = 2|0 [0] [0 ("} (3.105)
(Si] [S] [Sul| W) (0] [0] [My]| (w1
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where

[S11] = [Ki D+ (K, s10Ke 617 [Kead[Ks, a1 ' [Ks, 1]
[S12] = [Ki,]

[S1:] = [Ki3] + (K, 510K, 517 [Kusd[Ks, 517 0K, 5]
[S:1] = [Ky]

[S:2] = [Ky] + [Ky, 10]0Ks, 101" [Ke6][ K0, 61 ' [Kio, 2]
[S2:] = [Ky3] + [Ky, 10(Ks, 1017 [Ker [ K1, 7117 [K11, 5]
[S3:] = [K3\ ]+ [K; 610K, 517 [Ksa][Ks, o1 'Ky, 1]
[S32] = [K3d + [K;, 11 ]0K7, 1117 [Ks610K0, 61" [Kio, 2]

(S33] = [Kl + [K3,9]|:Ks,9]-][Kss][K9, s]—lqu,JJ
+[K, 10K, 11]_1[1{77][1{11.7]_‘[1{11,3]

[M33] = [My3] + [M; GJ0Ms, o1 [MsIM,, 17" [M;, 5]

o _l (3.106)
+ My, )M, ] (My;1IM,, 2] My, 5]

The solutions of Eq. (3.105) yields the eigenvalues A, for each mode M, N and the
minimum eigenvalue is the critical buckling load.

In this development the out-of-plane and torsional stiffnesses of the beams were neg-
lected. However, both the transverse and the in-plane displacements were constrained

between the shell skin and the stiffeners. In many similar analyses only the transverse
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displacements were constrained [118-123] and reasonable results were achieved. More-
over, this development is just an initial study of the buckling of stiffened shells using the
layerwise theory and an analytical approach. The results shown in Chapter S reveal that
' this method does work well. Hence, including the out-of-plane and torsional stiffness
of the stiffeners may in fact overstiffen the structure as developed in this chapter. This
could yield poor results when compared with other analyses. The majority of this re-
search involves the development and the use of the layerwise finite element method de-
scribed in Chapter 4. Consequently, it was decided to concentrate more upon the finite
element method and analyses rather then to include every minute detail into the analyt-
ical buckling approach. Including the out-of-plane and torsional stiffnesses of the

stiffeners can be included in the future.
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Chapter 4

Finite Element Formulation

4.1 Introduction

Displacement based finite element models developed from the governing equations pre-
sented in Chapter 2 are derived for both layerwise shell and beam elements. The
layerwise theory reduces the equations of three-dimensional elasticity to a quasi three-
dimensional laminate theory by assuming a layerwise approximation of the displace-
ments through the thickness. Consequently, the strains are different in different layers.
The interlaminar stresses (oy,, 0., 0.;) will be calculated using information from the in-
plane stresses calculated from the finite element solution and by using an approximate
technique to integrate the equilibrium equations. The variational statements of Appen-
dix A and Eq. (2.23) are used in the development of the finite element models. In addi-
tion, the derivation of the direct stiffness and tangent stiffness matrices are presented.

The finite element method for plates and shells is discussed in Refs. [32, 41-59, 125-142,
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163, 167-170]. Several example problems are included in this chapter to verify the finite

element program.

4.2 Layerwise Shell Finite Element Formulation

The generalized displacements (u, v» wy) for the shell elements are expressed over each
element as a linear combination of the two-dimensional interpolation functions y” and

the nodal values (i, v, w) as follows

NDS

(ujv ‘f[’ uf[) = Z(u;, ‘{/n! an)wn (4' l)

n=|

where NDS is the total number of nodes per element. Substituting Eq. (4.1) into the
variational statement of Appendix A yields the shell finite element model. A geometric
description of the finite element shell model is shown in Figure 12a. The elemental finite

model for layerwise shells may be expressed as

KV Ky Ky | (tny {F)
K" Ky Knt| () = ((F) 4.2)
K" K3y K| ({W) {F,}

where KiT", K[, etc. are the element submatrices provided in Appendix C, {U}, {V}, and
{W} are the column vectors of nodal displacements, {F,}, {F,}, and {F,} are the column

vectors containing the boundary and force contributions.
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Figure 12. Geometry of the finite element model: a) shell element; b) beam element.
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Three types of finite elements are developed in the finite element program. These are
lincar (4 nodes), Serendipity (8 nodes), and Lagrange (9 nodes) elements. Figure 13
shows these three types of finite elements. In this study the isoparametric rectangular
master clements are used. The interpolation functions for these elements are listed be-

low.

Linear Element ( NDS = 4 )

V&) = 4= o = )
V= £+ 81 =)

3 1 (4.3)
VG m) = 0+ o0+ )
V) = (1= o+ )
Serendipity Element { NDS = § )
V&M = =00 = (=1~ ¢y
VEm = 0+ 80 = (=14 ¢ =)
VEM) = 0+ O+ )= 1+ ¢+ )
E M = U= O 40~ 1= & 4 )
(4.4)

VGom = 5 (1= &1 = )
V&M = T+ 80 - g
V& m = (1= &0 + )
GRS (e
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Lagrange Element ( NDS = 9)

Ve = @ = o - )

Vi = @+ ot = )

VE o = @+ o0 + )

Ve = @ = O+ )

e = a - et - 4.5)
VM = @+ 00 - 1)

V& = Ta - e+

Ve = 2@ - ot - )
w°(:.n)=(1-:)(1—n)

4.3 Layerwise Beam Finite Element Formulation

The generalized displacements (i, w;) for the beam elements are expressed over each el-
ement as a linear combination of the one-dimensional interpolation functions ¥" and the

nodal values (uf, wf) as follows

NDS

(), w) = Z(uj'. wiy" (4.6)

nml
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4 7 3
(-1,0) |8 6 i
(1,0
1 5 2
(-1,-1)  (0,-1) (1,-1)
SERENDIPITY ELEMENT
n
-1,1) 01 (1,1
4 7 3
1,008 9 6 :

(0,0) (1,0)

1 5 2
1-1)  (0,1) (,-1)

LAGRANGE ELEMENT

Figure 13. Node numbering and coordinates for Linear, Serendipity, and Lagrange shell finite elcments.
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where NDS is the total number of nodes per element. Substituting Eq. (4.6) into the
variational statement of Eq. (2.23) yields the shell finite element model. The elemental

finite model for layerwise shells may be expressed as
5 5
K KD | (W) (£}
s s = 4.7)
K;}" Kz";" (W} {Fc}

where 1:<ﬂ", Ij(f’y', etc. are the element submatrices provided in Appendix C, {U} and {W}
are the column vectors of nodal displacements, {F,} and {F;} are the column vectors
containing the boundary and force contributions. See Figure 12b for a description of the

layerwise beam element geometry.

Three types of finite elements are developed in the finite element program. These are
linear (2 nodes), quadratic (3 nodes), and cubic (4 nodes) elements. Figure 14 shows
these three types of finite elements. In this study the Lagrange family of master elements

are used. The interpolation functions for these elements are listed below.

Linear Element { NDS = 2)

V= 30 -9

(4.8)
Vo= 2+ )
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Quadratic Element ( NDS = 3)

A U
W= (L + & - ¢ (4.9)
V= e+ 8

Cubic Element { NDS = 4)

Ve - - s ad -

AR P UR (R & )

3 27 1 (4.10)
A U (I

Vo= - (st a4

4.4 Assembly and Nonlinear Analysis

The layerwise shell and beam elements are assembled directly into the global stiffness

matrix which yields the following sets of equations
[K(A)]{A} = (F} (4.11)
such that

[K(8)] = ([K] + [Ky(A)) (4.12)

where [K(A)] is the assembled global stifTness matrix, [K;] and [Kyz(A)] are the linear

and geometrically nonlinear parts of the global stiffness matrix respectively, {A} is the
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Figure 14. Node numbering and coordinates for Linear, Quadratic, and Cubic beam finite elements.
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column vector of nodal displacements, and {F} is the column vector of boundary or ap-
plied force conditions. The system of equations represented by Eq. (4.11) can be solved
directly for linear problems. Howevcr, for geometrically nonlinear problems the stifTness

matrix is a nonlinear function of the unknown solution and must be solved iteratively.

The method sclected here for solving geometrically nonlinear problems of stiffened plates
and shells is the Newton-Raphson method. In the Newton-Raphson iteration method,

the basic equations for the residual vector {R} is given by the expression

{R} = [K(QA)KA}-{F} =0 (4.13)

Assuming that the solution is known at the r* iteration, the residual vector {R} is ex-

panded in a Taylor series about {A'},

0= (R), + %{M}, .o wa

= (KA} - (/) + [K7(a)]{sa]
where the tangent stiffness matrix [K7] is given by

[k7(aD)] = [ %} (4.15)

The tangent stiffness matrices for layerwise shell and beam elements are presented in

Appendix C. The final equation to be solved for the increment of the solution {647} is

[kT(ah]{sA7T = (R) (4.16)

The total displacement at the (r + 1)" iteration is given by
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A"} = (a7 + {847} (4.17)

The convergence criteria used to determine when the iterative solution stops is

NDS

ZIArH_AZ

= < EPS (4.18)

> 14

(=]

If applied displacements rather than applied forces are specified for a particular problem

then the total loads at the (r + 1) iteration is given by
{F*Y = {F}+{6F} (4.19)

The subsequent convergence criteria is then

imﬂ_

=l < EPS (4.20)

PNY:Ak

(=]

where 1 is the number of nodes at which the applied displacements are not specified.

A geometric explanation of the Newton-Raphson technique for a one-dimensional

problem is provided in Figure 15.
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|

Figure 15. Newton-Raphson method of a one-dimensional
itcration.
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4.5 Beam Element Stiffness Transformations

Beam elements may be oriented at any arbitrary angle « from the x axis of the shell as
shown in Figure 16. The translational degrees of freedom of the beam «’ and w’ are re-
lated to the displacements in the shell coordinates u, v, and w by the following vector

relationships

U = ucosa + vsina
vV = —usina + vcosa (4.21)
w=w

The stiffness transformation relation may be expressed as (see Cook [170] )

[K] = [(TI'[K,](T] (4.22)

where [K,] is the transformed beam stiffness matrix, [T] is the transformation matrix,
and [K",] is the stiffness matrix to be transformed. For example, the beam node local to

global coordinate transformation matrix is

ce sa O
[T(Jx_;)] = [-s& ca O (4.23)
0O 0 1
where
sa = sinea
ca = cosa (4.24)

The stiffness matrix to be transformed is
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Ky 0 Ky
LK, gl =1 0 1%'” 0 (4.25)
Ky 0 Kp

where X'\, represents the in-plane stifTness, X*;, and K’y are the shear stifTnesses, Ky

A
is the transverse stiffness, and X* 11 is the out-of-plane stiffness.

In this research the stiffeners are thin (0.2”) and an approximation of the out-of-plane
stiffness is made based upon the ratios of the out-of-plane moment of inertia, I,, with
the in-plane moment of inertia, I;. See Figure 12b for a description of the beam element

and the geometry. The out-of-plane stiffness is then developed as

N
K'n = I—K'n
: (4.26)
Boo- g
1 Rz o

Carrying out the matrix multiplications as defined by Eq. (4.22) yields the following

transformed stiffness matrix

(X cza+l/{\"“s2a) (K’,,casa-l?'”casa) K |jca
1 1

[K; gx3)] = (K case — I%'“casa) (K 5% + k’,,cza) K ysa (4.27)
K5 ca Ky sa Ky

Each node in the beam will transfer in the same manner as that presented in Eqgs.

(4.21-4.27).
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Figure 16. Representation of the beam displacements («’, v

ments (u, v, w).
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4.6 Interlaminar Stress Calculation

In this study an approximate technique is used to integrate the equilibrium equations
by using the in-plane stress information provided by the finite element solution. The
technique presented by Chaudhuri and Seide [171] is extended here to quadrilateral
isoparametric elements. The work of Reference [171) is derived for interlaminar shear
stresses and was also adopted in the work by Barbero and Reddy [172]). The authors of
[172] obtained the transverse shear stresses using derivatives of in-plane stresses that
were calculated by diflerentiating the interpolation functions of a finite element approx-
imation based on a generalized laminated plate theory. The work presented in [171,172]
will be extended to both transverse shear stresses (01 0,;) and the transverse normal
stresses o, for layerwise shell elements. Additional references on calculating

interlaminar stresses may be found in [173-175].

In this study the interlaminar stress distribution through each layer is approximated with
a quadratic function requiring 3N equations for each of the interlaminar stresses
(Oxzy 9y, 6.: ) Where N is the number of layers; N equations are used to satisfy the N
average shear stresses on each layer. Two equations are used either to impose vanishing
shear stresses at the top and bottom surfaces of the shell or for the interlaminar normal
stress g, = p, on the surfaces. If there is no applied p, on one or both surfaces then
6. = 0. Then, (N - 1) equations are employed to satisfy continuity of the stresses as

the interfaces between layers. The remaining (N - 1) equations are used to compute the
Oxz aa}'«f

6z ' 8z °

Oy

at each interface.
0z

jump in or

The average stresses on each layer are computed from the constitutive equations and the

displacement field obtained in the finite element analysis.
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The equilibrium equations for a cylindrical shell are

aaxx 1 aax)’ aaxz
ax TR oy T oz
Jda do do
] yy xy y2
R 3y T ax T3 =0
) dw Tyy 1 8 , % ow
2 g ) TR TR (R gy (4.28)

do F]
1 y2 Oxz 1 8 dw
YR T TR 3y o)
0 , % dw da,,
+ax( R ay)+ 0z +Po=0

The equilibrium equations for a flat plate reduce to

30,y aax}' do,,

ox + dy + 0z =0
a;;’ + a;;, + a;” =0 (4.29)
o

do,, 00y, do

= directly

Here the equilibrium equations are used to compute Tz-'-?;—'and 32

from the finite element approximation. The components of the stresses and their deriv-
atives are computed from the constitutive equations for each layer. The procedure re-
quires computation of the second derivatives of the displacements (u; v, w;) are presented

in Appendix D.
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4.7 Finite Element Verification Analyses

4.7.1 Introduction

Several representative problems are analyzed using the previously derived layerwise ele-
ments and solution procedures. Some of the problems have analytical solutions or the
analysis has been presented in the open literature by using different finite element mod-
els. Comparisons of the present results with published solutions, where available, pro-
vide a check for the accuracy and applicability of the layerwise elements developed for
this research work. Although additional analyses were performed only a selected group

of representative sample problems are presented here.

4.7.2 Unstiffened Plates and Shells

1. Orthotropic Clamped Cylindrical Shell

A comparison of the center deflection of an orthotropic clamped cylindrical shell sub-
jected to internal pressure as shown in Figure 17 is presented in Table 1. A comparison
is made with the finite element solutions presented by Reddy [167) and Rao [176] and the
analytical solution presented by Timoshenko and Woinowsky-Krieger [61]. A 2x2 mesh
of 9 node layerwise shell elements was used for this analysis. The layerwise finite ele-

ment results yield a good correlation with the published solutions.

2. Cylindrical Shell Roof Under the Action of Self-Weight
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Figure 17. A clamped cylindrical shell subjected to internal pressure.
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This problem ‘as shown in Figure 18 was solved using conventional techniques by
Scordelis and Lo [177]. This particular cylindrical shell problem has been used fre-
quently to assess shell finite element performance [45, 178-181]). The shell is supported
on rigid diaphrams and is loaded by its own weight. This is a test case of the application
of the full process to a shell in which bending action is severe due to the supports re-
straining deflection at the ends. In Reference [178], the authors showed that using fully
reduced integration yields more rapid convergence and better accuracy than selectively
reduced integration on the transverse shear terms only. The results presented in Figures
19 and 20 are for layerwise shell elements with fully reduced integration and using 1x1,
2x2, and 3x3 meshes 9 node elements. The layerwise elements produce excellent corre-

lation with the analytical solution of Reference [177).

3. Center Deflection of a Simply Supported Orthotropic Cylindrical Roof

The geometry, boundary conditions, material properties, and results for the simply sup-
ported orthotropic cylindrical roof is shown in Figure 21. The nonlinear results were
developed from the Newton-Raphson procedure discussed in Section 4.5. The results

are in good agreement with the results presented by Palmerio [182].

4. Center Deflection of a Simply Supported 0/90 Cylindrical Roof

The geometry, boundary conditions, material properties, and results for this problem are
found in Figure 22. The Newton-Raphson technique was employed to acquire the

nonlinear results. The results agree well with the work by Palmerio [182].
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Figure 18. An isotropic cylindrical shell roof under self-weight.
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Figure 21. Simply supported orthatrapic cylindrical roof.
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Figure 22. Simply supported [0/90] cylindrical roof.
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5. Stress Analvsis of a Simply Supported [0'90,0] Plate

The plate being studied is loaded with a uniformly distributed transverse load. The plate
boundary conditions and material properties are described in Figure 23. The plate is
simply supported on all four sides and due to symmetry only a quarter of the plate is
modeled. A 4x4 mesh of 9 node elements are used in this analysis. The through the
thickness distribution of the inplane normal stress, o.,, for an aspect ratio of a/h = 10,
is shown in Figure 24. The stresses were computed at the Gauss point x = y = 0.0528a.
Figures 25 and 26 contain similar plots of the interlaminar shear stresses 3,, and 7.,
respectively. In Figure 25, 7,, is computed at the point x = 0.0528a and y = 0.9472a.
In Figure 26, 7,, is computed at the point x = 0.9472a and y = 0.0528a. In these plots,
dashed lines represent stresses obtained from the constitutive equations, while the
smooth solid line represents the stress distribution obtained using the equilibrium
equations as developed in Section 4.6. Stresses obtained using the LWTR, the FSDT
(first order shear deformation theory) are also compared in these plots. The transverse
normal stress, @, obtained from both the constitutive and equilibrium equations is
shown in Figure 27. The transverse normal stress is obtained at the Gauss point x = y
= (0.0528a. Modeling each layer in the composite plate as several layers may serve to
increase the agreement between the LWTR equilibrium and the LWTR constitutive re-

sults.

4.7.3 Beam Structures

1. Cantilever Beam Subjected to an End Load

The beam dimensions and properties used in this analysis are found in Figure 28. The
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[0/90/0] Simply Supported Plate
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Viz=V13 = 0.30
V23 = 0.49

Figure 23. Simply supported [0/90/0) square plate subjected to a uniformly distributed load.
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Inplane Stress Oxx
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Cdd)

Figure 24. Through-the-thickness distribution of the in-plane normal stress 7,, for & simply supported,
10/90/0] laminated square plate under uniform load, (a/h = 10).
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Figure 25. Through-the-thickness distribution of the transverse shear stress 5,, for o simply supported,
10/90/0] laminated square plate under uniform load, (a/h = 10).
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Figure 26. Through-the-thickness distribution of the transverse shear stress g, for a simply supported,
{0/90/0] laminated square plate under uniform load, (a/h = 10).
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Figure 27. Through-the-thickness distribution of the transverse normal stress 5, for a simply supported,
10/90/0) laminated square plate under uniform load, (a/h = }0).
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linear results for this analysis are presented in Table 2 and good correlation exists be-

tween the finite element and the classical solutions.

2. Cantilever Beam Subjected to a Uniform Load

The beam dimensions and properties used for this example problem are shown in Figure
28. The linear results for this analysis are presented in Table 2. The linear finite element
results compare well with the results from classical beam theory. The large deflection
analysis of the cantilever beam subjected to a uniform load is presented in Figure 29.

These results compare well with the results presented by Liao [183].

4.7.4 Stiffened Structures

1. Analysis of a Stiffened Plate with Eccentric Stiffeners

This problem shown in Figure 30 was analyzed by Liao [183]. Analyses were made using
both 2 and 4 layers for the plate and 2 beam layers. Reduced integration was used for
the transverse shear stiflness terms. The results of this problem are shown in Table 3.
The LWTR finite element results compare well with the finite element results presented

by Liao and with classical beam theory.

2. Cantilever Plate with Symmetric Stiffeners

The geometry, material properties, and loading condition of the cantilever stiffened plate

are shown in Figure 31. The results obtained are compared with the finite element re-
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E=1.2x10 psi
Vv =02

Figure 28. Cantilever beam subject

ed to two different loading conditions: a) applied end load; b) uni-
formly distributed load.

Finite Element Formulation 118



Tabie 2. Linear Results for a Clamped Beam Subjected to an Applied End Load and to & Uniformly
Distributed Load (E = 1.2 x10% v = 0.2,L = 10in.)

Loadng Load LWTR (FEA) Cassical Bean Theory
End Losd Patlb. -0.334694 -0.333333
Distibuted Load q=1B/in  -0.125691 -0.125000
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Figure 29. Lulgoe deflection of a cantilever beam under a uniform load (E = 1.2 x 10 psi,v = 0.2, L
= i)
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sults obtained by Liao [183] and are provided in Table 4. A good comparison exists

between the two [inite element solutions.

3. A Square Plate Resting on Elastic Edge Beams and Supported at the Corners, Sub-

lected to a Uniformly Distributed Load

Figure 32 shows the plate geometry and material properties. The same problem was
solved by Timoshenko [61] who assumed that the elastic edge beams are of zero torsional
rigidity. Liao [183] also solved this problem using a finite element technique. The results
are obtained with a 2x2 mesh of 9-node shell elements and four 3-node elements are

displayed in Table 5. Results compare favorably with those of Liao.

This concludes the finite element verification analyses. The next chapter deals with the
buckling and stress analysis of stiffened composite shells, with emphasis on geodesically

stiffened cylindrical composite shells.
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Figure 30. Cantilever stiffened plate subjected to an end load.
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Figure 31. Cantilever stiffened plate with symmetric stiffeners.
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Table 4. Transverse Deflection of a Cantilever Stiffened Plate with Symmetric StifTeners.

Mesh Liso (1987) LWTR (FEA) *
(em) (cm)
4x4 Shell <0.18103 <0.18482 (2 layers)
12 Beam

* Transverse Deflection at the Loaded Point
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Plate: 19.53" x 19.53" x 0.2"
Edge beams : 0.5 width, 1" depth
E=10ps, va0.25

P= 1 psi

u-v-W-O

Figure 32. A square plate resting on elastic edge beams.
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Table 5. Transverse Deflection of an Elastically Supported Plate Subjected to a Uniformly Distributed

Load.
Mesh Lizo (1987) LWTR (FEA) Timoshenko
(inches) (inches) (inches)
2x2 Shell -0.095957 -0.097258 (2 layers) -0.120290
8 Beam -0.102152 (4 layers)
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Chapter 5

Results

5.1 Ritz Buckling Results

In order to validate the LWTR for discretely stiffened shells, some numerical results are
needed. Before the LWTR is used to generate results for discretely stiffened shells, nu-
merical results for certain known configurations are generated and compared with the
published solutions. A comparison of buckling results for unstiffened circular cylindrical
shells with simply supported boundary conditions are presented in Table 6. The results
of the LWTR are compared with an analytical solution first for an isotropic aluminum
circular cylinder subjected to axial compression. Also, in Table 6 a comparison of the
nondimensional buckling load for the LWTR, first-order shear deformation theory
(FSDT), third-order shear deformation theory (HSDT), and classical lamination theory
(CLT) for various cross-ply circular cylinders is presented. Results for the FSDT,

HSDT, and CLT are from the paper by Khdeir, Reddy, and Frederick [185]. Results for
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the LWTR anélysis compare well for isotropic and cross-ply unstifTened circular cylin-

drical shells as can be observed from Table 1.

Next, a study of a geodesically stifTened quasi-isotropic [ —45/45/90/0]s plate subjected
to axial compression was made. The geodesically stifTened plate was presented in the
work by Phillips and Giirdal [123). They used a Lagrange multiplier approach to
discretely attach beam-like orthotropic (isotropic) stiffeners to the plate and classical
lamination theory to model the plate skin. Also, they conducted a finite element analysis
of the plate using 9-node combined membrane and quadrilateral elements for both the
skin and stiffeners. The stiffened plate was comprised of symmetric stiffeners with
stiffener heights of 0.5", 0.75", 1.0, and 1.25". A description of the plate geometry and

the applied loads is shown in Figure 33. The boundary conditions were chosen so that

u=w=20aty=0, L,
v=w=0atx=0, L, (5.1
(L, = 80in., L, =28in.)

The Ritz solutions which satisfy these boundary conditions are

Plate

u= U cos(aux)sin(By) i=1,2,.. (N+1)

v= V" sin(a,x) cos(fny) ; ap = ’z_: v ba= ’11,_: (5.2)

wy= Wi sin(a,x) sin(B,y)

where Um, V™, and W™ amplitudes are to be determined for each mode (m, n).
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Geodesic Stiffeners

W= U* cos(ax) ak=%, i=1,2,..,T

“ -

(5.3)
w; = Wf" sin(a;x)

The procedure used to develop the buckling equations is exactly the same as that de-
scribed for shells. Material properties for the plate and stiffeners are presented in Table
7. Using the same geometry and loading a comparison of the buckling results is pre-
sented in [123] and the LWTR for discretely stiffened plates is shown in Table 8. The
LWTR compares well with the finite element method, and seems to produce better re-
sults than the Lagrange Multiplier Method (LMM) of Phillips and Girdal, especially
at lower stiffener heights. One reason for the difference between the buckling loads ob-
tained from the finite element method and the LWTR discrete method could be that for
smaller stiffener heights the finite element (plate) stiffeners have more of an effect on the
skin than does the LWTR. This results in higher finite element buckling loads at lower

stiffener heights.

Next, buckling analyses of quasi-isotropic [ —45/45/90/0]s circular cylindrical shells with
eccentric axial, ring, and geodesic stiffeners were conducted. The material properties
used for these analyses are the same as those found in Table 7. A nominal shell radius
of 85" and a shell length of 100" were selected. A shell thickness of 0.2” and a stiffener
thickness of 0.2” were used. These same dimensions were use by Girdal and Gendron
[186] in their design optimization analysis of geodesically stiffened shells. Comparisons
of the discrete LWTR approach with the smeared CLT method proposed by Jones
[90,91] and the smeared LWTR method of Reddy [37] were made for axial and ring

stiffeners.
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Table 6. Unstiffened Buckling Results.

Buckiing of a Simply Supported Unstitfened Alurminum Circular Cyinder
Subjected to Axial Compression

Buckiing Load Roark [ 184] Buckling Load LWTR
(Ibs./inch) (Ibs./inch) Error
6408.29 6106.10 4.95%

6
E=10x10 psi
v=0.30
thickness = 0.30 *

Buckling of Unstiffened Composite Cylinders
Comparison of Layerwise Laminate Theory of Reddy (LWTR) with Theories of Ref. [185)

-2
- NL
(L/Re 1, R/h=10), Ne —
100 h3 E,
Lamination Theory N Simply Supported
0 0
0%90 LWTR 0.1523
HSDT 0.1687
FSOT 0.1670
ar 0.1817
] 0,0
0°/90%0 LWTR 0.2814
HSOT 0.2794
Fsov 0.2813
ar 0.4186
0%90% ... LWTR 0.2728
10 iayers HSOT 0.2896
FSOT 0.2898
ar 0.3395

HSDT - Higher Order Shear Deformation Theory (third-order)
FSDT - First-order Shear Deformation Theory
CLT - Classicai Lamvnation Theory

E/E,= 40, G =G, =06E. Gy=05E. y,=0.25
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Table 7. Material Properties Used in the Stiffened Buckling and Finite Element Analyses.

Resuits

Properties

Values

S=T
ply thickness
Estirr

stiffener thickness

18.5 x 10%psi
1.64 x 108psi
1.64 x 10%psi
0.87 x 10%psi
0.87 x 10%psi
0.54 x 10%psi
0.30

0.30

0.49

182.8 x 103psi
210.5 x 103psi
27.2 x 10%psi
17.6 x 103psi
13.5 x 103psi
21.75 x 10°psi
0.00S in./ply
18.5 x 10%psi
0.20 in.
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(B)

Figure 33. Geodesically stiffened panel for verification of the LWTR analysis: a) panel geometry; b) fi-
nite element mesh.
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Table 8.

Analysis of [ —45/45/90/0]s 0.2” Thick Plate with Geodesic Stiffeners Subjected to Axial

Compression N, (Lx = 80", Ly = 287, 12 Stiffcners).

Results

Testbed FEA
sufhnct N N e Nowmo N Niwmo
(nches) | (bs./Inch) |(bss/inch) | (besinch) | Nreu Nrou
0.5 573 342 512 0.596 0.894
.75 705 613 656 0.870 0.930
1.0 748 708 713 0.946 0.953
1.28 783 743 784 0.949 1.001
Npgyy = Finite Element Buciding Load

N ,ai—CLT Lagrange Multiplier Buciding Load

N.wrig— LWTR Discrete Buckdng Load
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Results for quasi-isotropic [ —45/45/90/0];s shells with external (eccentric) axial stiffeners
subjected to axial compression are shown in Tables 9 and 10 and in Figure 34. The re-
sults in Tables 9 and 10 are for composite shells having 4, 8, 16, and 24 axial stiffeners
with various stiffener heights (1.0%, 2.0%, 3.0"). The plot of Figure 34 is a comparison
of the buckling load for a shell having 24 axial stiffeners as a function of stiffener height
for the various theories used in this study. The results indicate that the discrete LWTR
yields more conservative (lower) buckling results than the smeared approaches. More-
over, as the stifTfener height increases the difference between the discrete and the smeared
approaches increase. In addition, as the number of stiffeners increases the difference
between the discrete and smeared approaches increases. This could be due to some lo-
calized stiffener buckling which occurs in the discrete stiffener analyses, but cannot be
accounted for when using a smeared approach. At this time this localized buckling can-

not be predicted directly by the discrete method.

Results for quasi-isotropic [ —45/45/90/0]s shells with internal (eccentric) ring stiffeners
subjected to external pressure are presented in Tables 11 and 12 and in Figure 35. The
results in Tables 6 and 7 are for composite shells having 5, 10, and 25 ring stifTeners
subjected to external pressure for various stiffener heights (0.5%, 1.0%, 1.5”). The plot in
Figure 35 is for buckling pressure versus stiffener height for a cylindrical composite shell
having 25 ring stiffeners. As can be seen by the results in Tables 11 and 12 and in Figure
35 the discrete LWTR yields more conservative buckling results than the smeared ap-
proach. The difference becomes more pronounced as the number of stiffeners increases
and as the stiffener height increases. As mentioned previously this is probably due in

part to some localized stiffener buckling that is accounted for only in the discrete anal-

ysis.
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Table 9. Analysis of [ —45/45/90/0]5 0.2" Thick Circuiar Cylindrical Shell with Axial Stiffeners Sub-
jected to Axial Compression (R=385", L= 1007) - Jones Smeared/LWTR Discrete.

Results

No. of Stiffeners /| Smeared/ LWTR Lowest
Stiffener Heigt [ JONeS Approach |  Discrets Eror | Ansiyss
Unstiffened 1799 1793 0.33% LWTRD
Me1S, Nel Me18S, Net
47(1.0°) 2192 2181 0sox | Lwmo
M=1, Na10 Mal, Ne10
8/(.0%) 2283 2 «1.53% LWTRD
M=1, Ne10 M1, Na10
16/ (1.0°) 23 2334 2.01% | Lwmo
M=1, N=10 Mal, N=10
24/7(1.07) 2506 2446 2.45% | LWTRD
Mel,Ne10 | Met, Net0
47(2.0°) 2423 2423 0.0% WTRD
Mel, Ne10 M1, Ne9 L
8/(2.0°) e 2543 €3 | Lwmo
Me1, Ne10 M=1, Ne10
16/ 2.0 3296 3010
(2.0°) Mot N0 Mal, Na10 9.50% | Lwmo
24/ (2.00) 3867 an +13.36% | LWTRD
M=1, Ne10 M=1, N=11
4/(3.0°) 2940 2769 £10% | LwmRD
Ma1, Ne10 M1, Na11
8/(3.00) 3743 3178 A17.78% | LWTRO
M1, N=10 Ma1, Na11
167 (3.07) s328 4238 -25.72% | Lwivo
Mol Ne10 |  Mel, Nelt
247 (3.0°) 6882 s219 -31.86% | LwTRD
M=1, Na10 Me1, Ne11
M = number of axial haifwaves
N = number of craumferential halfwaves

me-uywmmuummofummmmm
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Table 10. Analysis of [ —45/45/90/0]s 0.2* Thick Circular Cylindrical Shell with Axial Stiffeners

Resuits

Subjected to Axial Compression (R=85", L = 1007) - Reddy Smeared/LWTR Discrete.

fuo. of Stiffenars /| Smeared/ LWTR Lowest
Stiffener Heignt  |Reddy Approach | Discrete Error Anslyss
(Inches) (Be/inch) (be./Inch)
Unstiftened 1793 1793 0.0% Same
Ma1S, N=1 M=1S, Nel
4/7(1.0°) an 2 +0.18% | Reddy
M=1, N=10 Me1, No10
8/(1.0) 2247 2221 -1.17% | LWTRD
Mel, N=10 Mel, N=10
16/ (1.0 2388 2334 23w | U
M=l, N=10 M=1, N=10
24701.0°) 2528 2448 «3.24% | LWTRD
Ma1, N=10 M1, N=10
4/(2.0°) 2422 2423 +0.04% | Ready
M=1, N=10 Me1, Nad
8/(2.0°) 2734 2543 -7.51% LWTRD
M=l, N=10 M=1, N=10
3354 3010
16/ (2.0") M1, Na10 Mel, =10 -11.43% | LwmRD
247 (2.0°) 3964 4 16219 | LWTRD
M=1, N=10 Mal, N=11
47(3.0°) 2956 e 675 | LtwTRD
M=, N=10 M1, Na11
/00" 3797 3178 .19.48% | LWTRD
M=1, N=10 M=, Nel1
16/ (3.0) 5456 4238 -28.74% | LWTRD
Me1, N=10 M=1, Nel1
247 (3.0°) 7081 s -35.68% | LWTRD
Mut, Ne10 Mel, Na11
M « number of axial halfwaves

N « number of drcumferential hatfwaves
LWTRD - Layer-wise Laminste Theory of Reddy with Discrets Stiffeners

137



(srauagns 7.0 x 0 001 = 7 ‘S8 = ¥

(sayouy) 3PRY JUYINS
€ §°¢ [ 4 S°1 4 $°0

e vovy—y v v vy v vy v ey vy

(81842s10) HIMT - @—

(paseaws) yam1 - e—
(paseaws) savopr/113 —o0—

g,

o g b o o o o 0 . . . 4

loosz

00SY

00SL

*dndv) 5T0/06/spiSp— 1) Ppow 1S s3ua1ns (erxe p7 ® s0) Jurppang (exy  -pe 2indiy

(ay/sq) peo] 3uiyong

Resuits

138



Table 11.

Resuits

Analysis of [ =45/45/90/0]s 0.2* Thick Circular Cylindrical Shell with Ring Stiffeners Sub-

jected to Lateral Pressure (R = 85", L = 100”) - Jones Smeared/LWTR Discrete.

No. of Stiffeners /| Smeared/ (Lmz Lowest
Stiffener Height [ JON®S Approach Discret Error Analysis
. Buciding Press. | Buciding Press,
(inches) — (og) (psl)
Unstiffened 1.63 1.61 -1.1% LWTRD
M=, Nall Mel,Nall
5/(0.5%) 5.57 5.00 11, WTRD
Mal, Na9 Ma1, Ne9 4% L
10/(0.5%) 8.62 7.49 -152% | LWTRD
M=1, N=8 Ma1l, Na9
25/(0.5™) 15.53 12.68 ] LWTRD
M=1, Ne8 M=1, Na8 22.5%
18.14 14.02 -29.4% LWTRD
5/(1.09 Me1, Na? M=1, Na8
28.9 21.42 -35.0%
10/(1.0% Mal, Na? Mal, N6 LWTRD
5138 36.29 -41.6%
25/(1.0" M Nt Watyrndt LWTRD
M=1, N=b M=1, Na?
62.06 28.46
-44.9%
10/(1.5%) Mal, Na6 Mal, Ne7 LWTRD
108.19 70.00 -54.6%
25/(1.57 a1, Nk ke LWTRD
M = number of axial halfwaves

N « number of circumfersntial halfwaves
LWTRD - Layer-wise Laminste Theory of Reddy with Discrete Stiffeners




Table 12. Analysis of [ —45/45/90/0]s 0.2" Thick Circular Cylindrical Shell with Ring Stiffeners Sub-

Results

jected to Lateral Pressure (R=35%, L =100~ ) - Reddy Smeared/LWTR Discrete.

No. of Stiffeners Smeared/ (LWTR) Lowest
/ Reddy Approsch Discrete
Stiffener Height Buciling P Error Analysis
(inches) uﬁL —{D%)
M=1, Ne11 M=1, Nall
$/(0.5%) 6.50 5.00 .
Mal, Nad Mel, Nag 29.9% | LWTRD
10/(0.57) 10.03 7.49 -34.0% LWTRD
M=1, N=8 M=1, Na9
25/(0.5") 18.10 12.68 LWTRD
Mei, Ne? Ma1, Ned 4.7%
19.8$ 14.02
/ -41.6% LWTRD
/107 Mal, No? M=1, No8
32.00 21.42
1 il
0/(1.0%) M1, Na? M1, No§ H94% | Lwrro
25/(1.0 55.71 36.29 -53.5%
.09 Mal,Na§ | M=, Na§ LWTRD
S/(1.5" 41.83 28.46 WTRD
Ms1, Nob Mal, Na? 47.0% t
66.35 28.46
' -, *
0/1.5% M=1, Nab M=1, Na? 54.9% LWTRD
113.27 70.00
25/(1 .
(159 M1, Ne§ Mul,Nag | ST-8% | LwTRD
M = number of axial haifwaves
N = number of circumferential haifwaves
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Analyses of quasi-isotropic [ —45/45/90/0]s shells with eccentric, internal stiffeners was
conducted next to compare the discrete LWTR with a finite element solution. The finite
element program CSM Testbed (187,188] was used to analyze the geodesic cylindrical
shells.  Nine-node assumed-natural-coordinate strain (ANS) C° (transverse-shear
deformable) shell elements were used to model both the shell and the stifleners. In these
buckling analyses and in the finite element analyses to follow, geodesically stiffened
shells having 1x12, 1x16, 2x12, and 2x16 unit cells as described in Figure 36 are studied.
The finite element model will be made of a unit cell of one of the aforementioned
geodesic cylinders. A typical finite element model of a unit cell is shown in Figure 37.
The cylinders were subjected to axial compression and stiffener heights of 0.5”, 1.07,
1.5.", and 2.0” were used for these analyses. The results of this study are presented in
Tables 13-16. The 2x12 geodesic shell model yields the closest agreement between the
two analytical methods and the results for this model are plotted in Figure 38. The
LWTR discrete results and the Testbed finite element results show good agreement. The
LWTR discrete method yields more conservative buckling loads than the finite element
method except for the 2x16 shell and the 0.5” and 2.0" stiffener heights in the 1x12 shell.
The maximum difference in the buckling loads is for the 1x16 shell where the LWTR
discrete results are 9.3% more conservative for the 1.0 and 1.5" stiffener heights than
the finite element method. The difference between the LWTR discrete method and the
finite element method can be attributed to the fact that the LWTR method neglects the
out-of-plane and the torsional stiffnesses of the stifTeners. Also, the shell is comprised
of a quasi-isotropic laminate and although small, the orthotropic stiffnesses,
Cis» Cas, Cis, Cus, are present. The LWTR discrete approach assumes these values are
zero and this may result in a slight change in the buckling load. Nevertheless, a good

correlation of the discrete and finite element buckling results does exist.
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Figure 36. Geodesically stiffened shell configurations.
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Table 13. Analysis of [ =45/d45/90/0]s 0.2” Thick Circular Cylindrical Shell with Geodesic StifTeners

Results

Subjected to Axial Compression (R =85, L = 100", Ix12 Geodesic Shell Model).

Stiffener Height T LWTR

(inches) 9 estbed FEA Discrete Error Lowest
(Ibs./inch) (Ibs./inch) Analysis

Unstiffened 1759 1793 +1.9% FEA

M=15, N=1

0.5 2105 2119 +0.7% FEA
1.5 2232 2211 -0.9% LWTRD

2.0 2284 2382 +4.3% FEA

M= 1, N= 10 for all LWTRD Results

1x12 Geodesic Model
a = 23.99 Degrees

M = number of axial halfwaves
N = number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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Table 14.

Resuits

Analysis of [ —45/45/90/0]s 0.2” Thick Circular Cylindrical Shell with Geodesic Stiffeners

Subjected to Axial Compression (R = 85", L= 100~ Ix16 Geodesic Shell Model).

Stiffener Height | Testbed FEA LWTR
: i Lowest
h ; Discrete
(inches) (tbs./inch) (Ibs.Jinch) Error Analysis
Unstiffened 1759 1793 +1.9% FEA
M=15, Na1
0.5 2225 2121 -4.3% LWTRD
1.0 2368 2148 -9.3% LWTRD
15 2488 2257 -9.3% [ LWTRD
2.0 2595 2494 -3.9% LWTRD

M= 1,N = 10 for all LWTRD Resuits

1x16 Geodesic Model

a= 18.46 Degrees

M = number of axial halfwaves
N = number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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Table 15. Analysis of [ —45/45/90/0)s 0.2” Thick Circular Cylindrical Shell with Geodesic Stiffeners
Subjected to Axial Compression (R=85", L = 1007, 2x12 Geodesic Shcll Model).

Resuits

Stiffener Height Testbed FEA D'LWTR Lowest
inches . iscrete E

( ) (IbS./lnCh) (Ibs./inch) fror Analysis

Unstiffened 1759 1793 +1.9% FEA
M=15, N=1

0.5 2156 2129 -1.2% | LWTRD

1.0 2193 2146 -1.8% LWTRD

1.5 2250 2189 -2.7% LWTRD

2.0 2289 2286 -0.1% LWTRD

M= 1, N= 10 for all LWTRD Results

2x12 Geodesic Model
a= 41.67 Degrees

M = number of axial halfwaves

N = number of circumferential halfwaves
LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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Table 16.

Ana.lysis of [ —45/45/90/0])s 0.2" Thick Circular Cylindrical Shell with Geodesic Stiffeners
Subjected to Axial Compression (R =857, L = {00~ s 2x16 Geodesic Shell Model).

Stiffener Testbed FEA LWTR
Height Discrete £ Lowest
(inches) (Ibs./inch) (Ibs./inch) rror Analysis
Unstiffened 1759 1793 +1.9% FEA
M=15, Na1
1.0 2078 2146 +3.3% FEA
1.5 2122 2189 +3.2% FEA
2.0 2192 2286 +4.3% FEA

Results

M= 1, N = 10 for all LWTRD Results
2x16 Geodesic Model
a=33.73 Degrees

M = number of axial halfwaves

N = number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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Analysis of cross-ply [0/90/90/0] circular cylindrical shells with eccentric axial, ring, and
geodesic stiffeners was also performed. The same material properties, shell thickness,

stiffener thickness, and geometries as those of the quasi-isotropic case were used.

Results for the cross-ply shells with external, eccentric axial stiffeners subjected to axial
compression are shown in Tables 17 and 18 and in Figure 39. Once again the discrete
approach yields more conservative buckling results than the smeared approach. As the
stiffener height increases the difference between the LWTR discrete and the smeared
approaches becomes larger as expected. The results plotted in Figure 40 are for 24 axial

stiffeners at various stifTener heights for the smeared and discrete approaches.

The results for internally ring stiffened cross-ply cylinders subjected to external pressure
are provided in Tables 19 and 20 and in F igure 40. The buckling pressure predicted by
the LWTR discrete approach is much lower than that predicted by the smeared ap-
proaches. The difference is more pronounced as the stiffener height increases. The plot

shown in Figure 40 is for a cylinder having 25 internal ring stiffeners.

Analyses of cross-ply shells with internal geodesic stiffeners was performed to compare
the LWTR discrete and the CSM Testbed finite element results. The same models and
geometries used in the quasi-isotropic analysis were also used for the geodesic cross-ply
analyses (see Figures 36 and 37). The results are for axial compression and are presented
in Tables 21-24. The 1x12 geodesic shell model yields the closest agreement between the
two solutions and a plot of the buckling results for this shell is shown in F igure 41. The
maximum difference in the buckling loads is for the 1x16 shell where the LWTR discrete
results are 13.4% more conservative for the 1.5" stiffener height than the finite element
results. As seen from Tables 21 and 23 the results begin to diverge at the 2.0” stiffener

heights. The difference between the LWTR discrete method and the finite element
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Table 17. Annlxsis of [0/90/90/0] 0.2* Thick Circular Cylindrical Shell with Axial Stiffeners Subjected
to Axial Compression (R = 85", L = 100”) - Jones Smeared/LWTR Discrete.

Results

INo. of Sdffeners /| Smeared/ LWTR Lowast
Stiffener Height Jones Approsch Discrets Error Ansiysis
Unstiffened 1033 1030 0.3% LWTRD
Mod, N=17 Med Na17
47Q1.0°) 1376 1381 +0.4% Jones
Mel, N=10 Me=1, N=10
8/(1.0" 1424 1399 -1.8% LWTRD
M=1, N=10 Mal, N=10
1670109 1518 1475 2.7% LWTRD
M=, N=10 Mel, N=10
24/ (1.0 1608 1550 -3.5% | LWTRD
M1, N=10 Me1, N=10
47(2.0°) 1530 1 «1.3% LWTRD
M1, Ne10 Matl, H=11
8/(2.0") 1726 1654 -4.4% LWTRD
Mal, N=10 M1, N=10
2109 1972
167207 Mat, Ne10 Mel,Ne10 | -69% | LwTRD
24/ (20 2481 2268 £.5% LWTRD
) Mal, N=10 M=, Ne11
4/(3.0") 2048 1753 -18.3% | LWTRD
Msl, N=10 Mal, N=10
8/(3.00) 2749 2197 .25.7% LWTRD
Ma=1, N=10 Me1, N=10
16/ (3.0" 4120 2978 -38.3% | LwtRD
M=1, N=10 Ma1, Nal1
247 (3.0°) 5430 3729 462% | LwtRD
Mal, Na10 M=1, N=11
M = number of axial halfwaves

N = number of crammferential halfwaves
LWTRD - Layer-wise Laminats Theory of Reddy with Discrete Stiffeners
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Table 18. Analysis of [0/90/90/0) 0.2” Thick Circular C
to Axial Compression (R = 85", L = 100”) - Reddy Smeared/LWTR Discrete.

Resuits

[No. of Stifteners /[ Smeared/ LWTR Lowest
Stiffenar Heightt Reddy Approsch Discrete Emror Analysis
(inches) (be./Inch) ({ba./Inch)
Unstiffened 1030 1030 0.0% LWTRD
Med, No1? Mot N=17
4/(1.0°) 1374 1381 +0.5% | Reddy
Mel, N=10 M=1, Ne10
8/(1.0°) 1427 1399 -2.00 LWTRD
Mel, Ne10 M=l, Ne10
167 (1.0°) 1530 1473 2.7% LWTRD
M=, Ne10 M=1, N=10
247(1.0°) 163 1550 s2% | twmo
Mel,N=10 | M=1, N=10
4/(2.0) 1583 150 -4.9% LWTRD
M=1, Ne10 Mel, Nel1
87(2.07) 1846 1634 A1.6% | Lwmo
M=1, Ne10 Mal, N=10
2358 1972
167 (2.0) Mol Not0 Mal, Na10 -19.5% | Lwmo
24/ (200 2883 22¢8 25.9% |LwTRD
@ Ma1, N=10 Mal, N1l 2
4/(3.0") 20Mm 1733 -16.7% | LWTRD
Me1, N=10 Mal, N=10
2807 2187 283% | Lwmo
8/3.0) Ms1, Na10 Ma=1, N=10
16/ (3.0°) 4240 2978 42.4% | LwmRD
M=1, Na10 M=1, Na11
247(3.0°) 5627 s729 -509% | LwTRD
M=1, N=10 M=1, Na11
M = aumber of axial halfwaves

N = number of circumferential halfwaves
LWTRD - Lsyer-wise Laminata Theory of Reddy with Discrets Stiffeners

yiindrical Shell with Axial Stiffeners Subjected
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Table 19. Analysis of (0/90/90/0] 0.2” Thick Circular Cylindrical Shell with Ring Stiffeners Subjected
to Lateral Pressure (R= 85", L = 100”) - Jones Smeared/LWTR Discrete.

Resuits

No. of Stiffeners /| Smeared/ (LWTR) Lowest
Stiffener Height  [JoNeS Approsch | Dlscr ey, | Emor  [Avayss
(inches) ot~ hnalll R4
Unstitfened 0.89 0.88 0.9% LWTRD
M=1, Nei2 M=1, Nal2
5/(0.5%) 4,67 408 .
M=, Ne9 Mal, Nep 14.4% | LWTRD
10/(0.5%) 721 6.21 -16.0% | LWTRD
M=1, Na8 Ma1, Nu9 '
25/(0.5") 12.87 10.63 21.0% | LWTRD
Mal, Na? Me1, Na? :
15.36 11.73
«30.9% LWTRD
5/(1.07 Mel, Na? Mel, Na?
23.83 18.2%
1 , 1 -3006“
0/01.0% M=1, Na6 M=1, Ne§ LWTRD
25/0(1.0 42.49 29.69 .
(1.09 iy Mol Na -43.1% LWTRD
5/(1.5%) 32.73 23.414 -39. LWTRD
M=1, Na6 M=1, Neof 39.6%
49.92 36.19
10/(1.59 Ma1, Na§ Me1, N6 -37.9% | LWTRD
258/(1 90.72 $5.78
(1.59) Mol et Mol NS €2.7% | LWTRD
M = number of axial haifwaves

N = number of circumferential halfwaves

LWTRD-Laycr-wiuLGimtcTheoryofRoddyMthMe Stiffeners




Table 20. Anaiysis of [0/90/90/0] 0.2 Thick Circuiar Cylindrical Shell with Ring Stiffeners Subjected
to Lateral Pressure (R =85, L = 100”) - Reddy Smeared/LWTR Discrete.

No. of Stffeners / R wsf"w (LWTR) Lowest
Stiffener Height Approach Discrete Error Analysis
Buciding Press. | Buckiing Press.
(nches) (ow) (o)
Unstiffened 0.88 0.88 0.0% LWTRD
M=l Ne12 M=1, Na12
$/(0.5") 5.52 4.08 .
Mel, Na8 Mel, Na9 35.1% LWTRD
10/(0.5%) 857 6.21 .38.0% | LWTRD
Me1, Na8 Mel, Na8
25/(0.5™) 18.18 10.63 LWTRD
Mel,Ne? | Mel, Na? ~42.5%
17.03 11.73
s/(1 -45. LWTRD
(109 M=1, Na?7 M=l, N=8 S.1%
10/(1. 26.02 18.25
1.0% Me1, Na§ el beg | 12S% | wwmro
25/(1.07 45.35 29.69 -52.7%
Mal NaS Mel, Nab LWTRO
$/(1.59 35.17 23.41 .
Mal, Ne§ Mal, Ne§ 50.:2% | LWTRD
52.80 36.19
10/(1.5) Mol, Ne§ Mol Neg | 459% | Lwmo
25/015 93.76 §5.78
(159 Ma1, Nod M=1, Na$ -68.2% LWTRD
M = number of axial haifwaves
N « numnber of circumferential halfwaves

LWTRD - Layer-wise Laminate Theory of Reddy with Discrete Stiffeners
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method can be attributed to the fact that the LWTR method neglects the out-of-plane
and the torsional stiffnesses of the stiffeners. The difference starts to become more
pronounced as the stiffener heights increase. This is due to the fact that as the stiffener
height increases the effects of the out-of-plane and the torsional stiffnesses on the global
buckling results increase. Except for the 1x16 geodesic shell model there appears to be
a good correlation of the buckling results, especially for the 1.0” and 1.5” stiffener

heights.

Finally, a study of the buckling of geodesically stiffened cylinders subjected to external
pressure was conducted. A 1x12 geodesic shell model was selected which has the same
geometry and dimensions as used for the axial compression analyses. A comparison
between the LWTR discrete method and the finite element method (CSM Testbed) was
made for both the cross-ply case, [0/90/90/0], and the quasi-isotropic case,
[ —45/45/90/0]s. The results for the cross-ply [0/90/90/0] shell is found in Table .25.
The LWTR results correlate fairly well with the finite element solutions especially for the
unstiflened case and for lower stiffener heights. The quasi-isotropic results are presented
in Table 26. The results indicate that at lower stiffener heights the buckling pressures
for both analytical methods are reasonably close, but as the stifTener height increases the
buckling pressures tend to diverge. Neglecting the orthotropic stiffnesses,
Cis» C, Cas, Cus, definitely must have a major impact on the stiffness of the layerwise
quasi-isotropic laminates when the shells are sbjected to external pressures. Another
difference between the LWTR discrete method and the finite element method can be
attributed to the fact that the LWTR method neglects the out-of-plane and the torsional
stiffnesses of the stiffeners. The difference becomes larger as the stiffener height in-
creases because as the stiffener height increases the effects of the out-of-plane and the

torsional stiffnesses on the global buckling results become more prominent.
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The typical CPU time for the Testbed finite element buckling analyses is 620 seconds.
The CPU time for the layerwise discrete method for one buckling mode (m, n) is 410
seconds. Consequently, the CPU times for the layerwise discrete method can become
large, perhaps 8-10 hours or more, if a sweep of a large number of buckling modes (m,

n) is made in order to determine the minimum eigenvalue,

5.2 LWTR/Testbed Finite Element Stress Analysis Comparison

A stress analysis comparison of the LWTR and CSM Testbed finite element codes was
made for geodesically stiffened shells. A 1x12 geodesically stifTfened shell as shown in
Figure 36 with 1.0 high by 0.2” thick internal stiffeners was selected as the comparison
model. The shell geometry consists of a radius of 85~ and length of 100", In lieu of
modeling the entire cylinder, symmetry conditions were employed and an analysis of a
unit cell was made, see Figures 42 and 43. The loadings were employed via the appli-
cation of uniformly applied end displacements. Three laminate layups were studied in
this analysis: [0/90/0]; [45/ —45/45/ — 45]; and [60/ — 60/0/ — 60/60]. The material
properties used are given in Table 7. The ply thickness used in these analyses is 0.100".
Analyses were performed with 0° orthotropic stiffeners. Applied end displacements of

0.01" were used to generate the compressive loads.

The CSM Testbed elements described in section 5.1 were used for this analysis. The fi-
nite element model shown in Figure 42 describes the finite element mesh and the
boundary conditions used for this analysis. The Testbed finite element model uses 256
nine-node assumed-natural-coordinate strain (ANS) shear deformable shell elements to

model the the shell and 32 nine-node plate elements to model the stiffeners.
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Table 21. Analysis of [0/90/90/0] 0.2” Thick Circular Cylindrical Shell with Geodesic Stiffeners Sub-

Resuits

jected to Axial Compression (R =85, L = 100", 1x12 Geodesic Shell Model).

Stiffener Height

Testbed FEA

LWTR

. i Lowest
(inches . Discrete
) (Ibs./inch) (Ibs./inch) Error Analysis
Unstiffened 1053 1030 -2.2% LWTRD
M=15, N=1
0.5 1347 1326 -1.6% LWTRD
1.0 1570 1549 -1.3% LWTRD
1.5 1664 1702 +2.2% FEA
2.0 1743 1953 +10.8% FEA

M = 1, N= 10 for all LWTRD Resuits

1x12 Geodesic Model
a = 23.99 Degrees

M = number of axial halfwaves
N = number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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Table 22. Analysis of [0/90/90/0] 0.2 Thick Circular Cylindrical Shell with Geodesic Stiffeners Sub-
jected to Axial Compression (R = 35", L = 100", Ix16 Geodesic Shell Model).

Stiffener Height Testbed FEA .LWTR Lowest
(inches) . Discrete Error .
(Ibs./inch) (Ibs./inch) Analysis

Unstiffened 1053 1030 -2.2% LWTRD

M=15, Nm1

0.5 1357 1327 -2.2% LWTRD

1.0 1768 1537 -13.1% LWTRD

1.5 1980 1715 -13.4% LWTRD

2.0 2150 2016 -6.2% LWTRD

M = 1, N= 10 for all LWTRD Resuits
1x16 Geodesic Model
a = 18.46 Degrees

M = number of axial haifwaves
N = number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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Table 23. Analysis of [0/90/90/0) 0.2~ Thick Circular Cylindrical Shell with Geodesic Stiffeners Sub-
jected to Axial Compression (R =85, L = 100", 2x12 Geodesic Shell Model).

Results

Stiffener Height LWTR
(inches) g Testbed FEA Discrete rror Lowest
(Ibs./inch) (Ibs./inch) Analysis
Unstiffened 1053 1030 -2.2% LWTRD
M=15, N=1

0.5 1505 1588 +5.2% FEA

1.0 1724 1764 +2.3% FEA

1.5 1802 1908 +5.6% FEA

2.0 1838 2052 +10.4% | fFEA

M= 1, N= 10 for all LWTRD Resuits

2x12 Geodesic Model
a = 41.67 Degrees

M = number of axial halfwaves
N = number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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Table 24. Analysis of [0/90/90/0] 0.2” Thick Circular Cylindrical Shell with Geodesic Stiffeners Sub-
jected to Axial Compression (R =85, L= 100", 2x16 Geodesic Shell Model).

Stiffener Height LWTR

(inchea) g Testbed FEA Discrete Error Lowest
(Ibs./inch) (Ibs./inch) Analysis

Unstiffened 1053 1030 -2.2% LWTRD

M=1S, N=1

0.5 1658 1574 -5.2% LWTRD
1.0 1937 1763 -9.0% LWTRD

1.5 2052 1957 -4.6% LWTRD

2.0 2180 2206 +1.2% FEA

M= 1, N= 10 for all LWTRD Resuits
2x16 Geodesic Model
a = 33.73 Degrees

M = number of axial halfwaves
N = number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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Table 25. Analysis of [0/90/90/0] 0.2* Thick Circular Cylindrical Shell with Geodesic Stiffeners Sub-

Resuits

jected to Lateral Pressure (R = 85", L = 100”, Ix12 Geodesic Shell Model).

Stiffener Testbed FEA I..WTR
Height . Discrete Error Lowe;t
(inches) (psi) (psi) Analysis
Unstiffened 0.89 0.88 -1.1% LWTRD

M=1, N=11

0.5 1.22 117 -4.0% LWTRD
1.0 1.88 1.67 -11.2% LWTRD
1.5 2.40 217 -9.6% LWTRD
2.0 2.65 2.33 -12.1% LWTRD

M= 1, N =11 for all LWTRD Resuits
1x12 Geodesic Model
a=23.99 Degrees

M = number of axial halfwaves

N = number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners



Table 26. Analysis of [ —45/45/90/0]s 0.27 Thick Circular Cylindrical Shell with Geodesic StifTeners

Results

Subjected to Lateral Pressure (R=85", L = 1007, I1x12 Geodesic Sheil Model).

Stiffener: | Testbed FEA LWTR
Heightr Discrete E Lowest
(inches) (psi) (psi) rror Analysis
Unstiffened 1.63 1.61 -1.2% LWTRD
M=1, N=11

0.5 2.09 1.90 -9.1% LWTRD
1.0 2.79 2.09 -25.1% LWTRD
-3 3.80 2.20 42.1% LWTRD

M= 1,N= 11 for all LWTRD Results

1x12 Geodesic Model
a=23.99 Degrees

M = number of axial halfwaves

N = number of circumferential halfwaves

LWTRD - Layerwise Laminate Theory of Reddy with Discrete Stiffeners
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The LWTR finite element model described in Figure 43 shows the finite element mesh
and the boundary conditions used for this analysis. A more refined mesh is used in
critical regions such as the stiffener intersection. The model employs 256 four-node
LWTR shell elements to model the shell and 32 two-node LWTR beam elements to

model the stifTeners.

The first analysis considered here is for a [0/90/0] shell with orthotropic (0°) stiffeners.

The plot in Figure 44 shows the axial stress, Oxx, for all layers at x = % plotted along

the nondimensional circumference of the unit cell, Li, The stresses calculated from the

two analyscs are in good agreement away from the point of the stiffener intersection.
1

Near the stiffener intersection i.e. TY,- = > the LWTR stresses are less compressive
than the stresses calculated by the Testbed analysis. For the bottom 0° layer the axial
compressive stress is 3.2% (120 psi) less compressive than the Testbed axial stress. This
small difference is within reason and some of the difference can be attributed to the fact
that a different type of element is used for the stiffeners in each of the models and a small
difference in the behavior of the stiffener intersection intersection is being observed. The
axial stresses in the 90° layer as shown in Figure 44 are in good agreement except at the
location of the stiffener intersection where the LWTR stress, o, is 10.6% (30 psi) less
compressive than the Testbed axial stress at that location. The LWTR axial stress at the
stiffener intersection in the top 0° layer is 3.0% (104 psi) less compressive than the
Testbed axial stress. It is apparent from this analysis that the stiffener intersection is

slightly more compliant (less stiff) for the LWTR method when compared with the re-

sults generated from the Testbed analysis.

The second analysis considered here is that of an angle ply laminate,

[45/ — 45/45] — 45], with orthotropic stiffeners. The axial stresses for the individual
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layers are presented in Figures 45 and 46. The axial compressive stresses in the individual
layers are in fairly close agreement. The largest difference in stresses occurs at the
stiffener intersection location for the top — 45° layer shown in Figure 46 where the
LWTR are 10.5%" (40 psi) less compressive than those calculated from the Testbed
method. This difference in stresses at the stiffener intersection can be attributed to the

difference in the stiffener intersection stiffness of the two analytical methods.

The final analysis is that of a symmetric 5 layer quasi-isotropic shell laminate,
[60/ — 60/0/ — 60/60], with orthotropic stiffeners. The results of this analysis are pre-
sented in Figures 47-49. There is good agreement of the axial stresses for all layers. The
axial stresses in the 60° and —60° layers are 5-6% (20-25 psi) smaller in the LWTR along
the circumference of the shell. The largest percentage difference in compressive stress
occurs at the location of the stiffener intersection in the top 60° layer where the LWTR
axial stress is 10.4% (35 psi) smaller than the Testbed stress, see Figure 49. In the 0°
layer the Testbed results are an average of 2.5% (80-100 psi) smaller than the LWTR
results. Thus, for the LWTR analysis the 0° layer is carrying slightly more compressive
load and the 60° and —60° layers do not carry quite as much compressive load when
compared with the Testbed results. Overall there is good agreement of the axial stresses

for all layers.

The stress analysis comparison here was conducted to help verify the stress analysis ca-
pabilities of the LWTR finite element program. Several lamination schemes were con-
sidered to accomplish this task. A good correlation exists between the LWTR analyses
and the Testbed analyses. Small differences in stresses do occur at the siffener inter-
section. These differences are not major and are due to the difference in stiffener inter-

section response measured by the two analysis methods.
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The CPU time for the Testbed finite element stress analysis is 125 seconds. Run times
for the layerwise theory vary depending upon the number of shell laminate layers, num-
ber of nodes in the mesh, and the type of elements used (4 or 9 nodes). A three layered
shell, [0/90/0], medel (289 nodes) with one layered beams has 3567 active degrees of
freedom. A mesh of 256 four node layerwise shell elements and 32 two node layerwise
beam elements will have a half-bandwidth of 285. The CPU times for this model are 139
seconds for a linear analysis and 730 seconds for a geometrically nonlinear analysis (4
iterations to converge). If the mesh is changed to 64 nine node layerwise shell elements
and 16 three node layerwise beam elements with a half-bandwidth of 555, the CPU times
increase to 736 seconds for a linear analysis and 4251 seconds for a nonlinear analysis
(5 iterations to converge). A six layered shell, [45/90/0]s, with 289 nodes using one
layered beams has 6168 active degrees of freedom. A mesh of 256 four node layerwise
shell elements and 32 two node layerwise beam elements will have a half-bandwidth of
456. The CPU times for this model are 752 seconds for a linear analysis and 3261 sec-
onds for a geometrically nonlinear analysis (4 iterations to converge). Increasing the
bandwidth has a large influence on the CPU time necessary to run the layerwise finite
element analyses. Furthermore, layerwise elements are not practical elements to use if

a postbuckling analysis must be conducted due to the large run times.

5.3 Displacements and Interlaminar Stresses in Geodesically Stiffened Shells

In this study it was desired to conduct analyses of geodesically stiffened shells using the
LWTR in order to determine the trends that have major effects on the transverse dis-
placements and the interlaminar stresses. Variables such as the laminate layup and

thickness, stiffener height, stiffener orientation, stiffener angle, cell geometry, cell length,
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-200

—o— LWTR Bottom 45 Degree Ply
- =¢ - Testbed Bottom 45 Degres Ply

Compressive Stress g, (psi)

-.Od‘ -
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Figure 45. LWTR and Testhed IXI2  geodesic shell axial stresses for bott !
[45/ = 45/45/ - 45] laminate: a) bottom 45° ply; b) bottom ~45° ply (x = l?/"z'). wers of
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Figure 46. LWTR and Testhed 1x12 geodesic shell axial stresses for top layers of
[48/ = 45/45] — 45] laminate: a) top 45° ply; b) top —45° ply (x = L/2).
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Figure 48, LWTR and Testhed 1x12 geodesic shell axial stresses for 0° layer of
(60/ — 60/0/ — 60/60] laminate (x = L/2).
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Figure 49. LWTR and Testbed IxI2 geodesic  shell axial stresses for ¢ K
[60/ - 60/0/ ~ 60/60] laminate: a) top 60° ply; b) top —60 piy (x = Ly2) T
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were varied when performing this study. Concentration here is placed upon the action
of the shells under pure compressive loads and combined loads generated with the addi-
tion of internal pressure. In addition, a geometrically nonlinear analysis was performed
to determine the effects on the displacement and stress fields. A base line design using
a 1x12 geodesically stiffened shell with a nominal radius of 85”, shell length of 100", 1.0”
high by 0.2” thick orthotropic internal stiffeners, and a [0/90/0] shell laminate was used
for a large number of the analyses. A simple shell laminate, [0/90/0], was used to per-
form many of the comparison studies in order to keep the number of degrees of freedom
manageable and in particular to keep the bandwidth of the global stiffness matrix from
becoming excessively large. The bandwidth can become extremely large when analyzing
a large number of nodes and laminate layers using the layerwise theory. The LWTR fi-
nite element model used in these analyses was described previously in Figure 36. The
model consists of 289 nodes, 256 four-node layerwise shell elements, and 32 two-node

beam elements.

5.4 Displacement Field in Geodesically Stiffened Shells

A study of the transverse displacement field along the circumference of the unit cell at
X = -% was performed for various shell parameters. The transverse displacements. are
the largest and most interesting displacements for the structures being analyzed in this
research. The shells are subjected to compressive loading via the application of applied
end displacements of 0.01” and to a combined loading consisting of applied end dis-

placements of 0.01” and an internal pressure of 10 psi. The transverse displacements

presented in this study are nondimensionalized using the following expression:
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X 100 (5.4)

Here w is the nondimensional transverse displacement, w is the transverse displacement,
h is the total laminate thickness, E; is the modulus in the 1 direction, N, is the applied
load, R is the shell radius, and L is the shell length. The first study considered here is
the effect of changing the laminate layup when the shell is subjected to compressive
loading. The nondimensional displacement results presented in Figure 50 are for six
different laminate layups: [0/90/0], [45/ - 45/45/ — 45], [60/ — 60/0/ — 60/60],
[45/90/0]s, [ —45/45/90/0]s, and [30/ — 30/0/ — 30/30]. The [0/90/0], [ —45/45/90/0]s,
and [30/ — 30/0/ —30/30] laminates show the largest variations in nondimensional
transverse displacement 234%, 155%, and 113% respectively from the edge of the unit

cell to the stiffener intersection at Li = (.5 The [45/ — 45/45/ - 45],

[60/ — 60/0/ — 60/60], (45/90/0]s yield respectyive changes in nondimensional transverse
displacement along the circumference of the shell of 45%, 52%, 100%. The
(45/ - 45/45/ — 45] and {30/ - 30/0/ - 30/30] laminates yield the maximum nondimen-
sional transverse displacement along the circumference of 1.484 and 1.305 respectively
for the given geometry and loading conditions. Thus, in order to avoid the largest
transverse displacements and variations in transverse displacements in geodesically stiff-

ened composite shells it is best to avoid designs containing cross-ply laminates, angle

ply laminates, and laminates containing +30° or —30° plys.

The next study concentrates on the effects of changing the geodesically stiffened shell
geometry and the stiffener orientation angle on the transverse displacement field. A
(0/90/0] 1x12 geodesically stifTened shell is used in this analysis. The shells are subjected

to uniform compressive loading via applied end displacements of 0.01”. The stiffener
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—— G1x12, 0/90/0, R=85", h=0.30", SH=1.0", dei=0.01"

— = (1x12, 45/-45/45/45, R=85", h=0.30", SH=1.0", del=0.01"
- = == G1x12, 60/-60/0/-60/60, R=85", h=0.30", SH=1.0°, dei=0.01"
— = G1x12, (45/90/0)s, R=85", h=0.30", SH=1.0°, dei=0.01"

- .- G1x12, (-45/45/90/0)s, R=85", h=0.30", SH=1.0", dei=0.01"
-------- G1x12, 30/-30/0/-30/30, R=85", h=0.30°, SH=1.0", dei=0.01"

1.50

Normalized Transverse Displacement, w

1.00

0.50

0.00

.0.50 ——A———— Al
0.00 0.20 0.40 0.60 0.80 1.00
Y/Ly
—  wWE,h?
NxRL

Figure 50. Nondimensional transverse displacements for & 1x12 geodesically stiffened shell as a function
of the laminate stacking sequence under compressive loading (R =35, L= 100").

Results 179



orientation angle, a, relative to the shell is shown in Figure 1 and Figure 14. Figure 51
shows the nondimensional transverse displacement as a function of the geodesic shell
geometry and the subsequent stifTfener orientation angle. The variation in the stiffener
oricntation angles were obtained by changing the cell geometry from GIx12 to G1x16
in Figure 5la and by changing the shell length from 50" to 200" in Figure 51b. The
nondimensional transverse displacement field presented in Figure Sla shows that as the
cell geometry is changed from Glx12 (« = 24% to G1x16 (« = 18.5%) the maximum non-
dimensional transverse displacement decreases by 72%. The maximum transverse dis-
placement shows the largest decrease, 41%, when the cell geometry is changed from
GIx12 (a = 24% to GIxI3 (x = 22.3%. When the cell geometry is changed from Glx!5
(0 =19.6% to Glx16 (x = 18.5% the change in maximum transverse displacement be-
comes less significant (2.5%). The results presented in Figure 51b show the transverse
displacement as a function of the stiffener angle by changing the shell length. The trends
predicted here indicate that as the shell length is decreased from 200" to 50" the maxi-
mum transverse displacement decreases by 52% even though the stiffener orientation
angle is increased from 12.59 to 41.7°, Thus, decreasing the shell length has a much
greater effect on the shell stiffness than does increasing the stiffener orientation angle.
The results presented in Figure 51 indicate that the response of geodesic shells is a
stronger function of the shell geometry i.e. the number of cells around the circumference

and the cell length and a weaker function of the stiffener orientation angle.

The effect of increasing the stiffener height on the nondimensional transverse displace-
ment for both compressive loading and combined loading is shown in Figure 52. A
[0/90/0] 1x12 geodesically stiffened shell is used in this analysis. Shown in Figure 52a
is a plot of the nondimensional transverse displacement along the nondimensional shell

circumference. As expected the nondimensional transverse displacements decrease as a
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function of the stiffener height. As the stifTener height is increased the area of the
stiffeners is increased and consequently the applied load N, increases because the load
is a function of the applied displacements. In this study the applied displacement are
constant and thus.increasing the area increases the applied load. The transverse dis-
placements are also a strong function of the stiffener bending stifTness and to some ex-
tent the axial stiffness of the stifTener. Thus, the transverse displacements are a function
of the applied load, which increases as the stifTener height is increased, and the stifTness
of the stiffeners. Shown in Figure 52b is the effect of the stiffener height on the nondi-
mensional transverse displacements along the shell circumference when the shell is sub-
jected to combined loads. The decrease in the nondimensional transverse displacement
appears to be fairly uniform. In this case the applied load N, is a function of the applied
displacements, load area, and the internal pressure. The load area is a function of the
increasing stiffener height. Therefore, the normalized transverse displacements will be a

complex function of the stiffener height, stiffener stiffness, and the internal pressure.

The nondimensional transverse displacements as a function of the shell laminate thick-
ness for a [0/90/0] 1x12 geodesically stiffened shell are shown in Figure 53. The laminate
thicknesses studied here are 0.15%, 0.30", 0.45%, and 0.60". The results for compressive
loading, shown in Figure 53b, reveals that the nondimensional transverse displacements
decrease by 40.6% when increasing the shell thickness from 0.15" to 0.60". The maxi-
mum normalized transverse displacements for the 0.15” and 0.30" thicknesses are close
together. This probably occurs because the nondimensional transverse displacement
used in this study is a function of the shell thickness squared. The actual transverse
displacements differ by 88%. The maximum difference in the actual transverse dis-
placements is between the 0.15" and 0.60" shell thicknesses and is 558%. The results for

the combined loading condition as a function of shell laminate thickness is shown in
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Figure 53b. As in the case for compressive loading, increasing the shell laminate thick-
ness causes the nondimensional transverse displacement to decrease. The maximum
dilTerence in the nondimensional transverse displacement is 40.3% when increasing the
shell thickness from 0.15” to 0.60". The actual transverse displacement difference be-
tween the 0.15” and 0.60” thicknesses is 386%. The transverse displacements are defi-

nitely a function of the shell laminate thickness.

Shown in Figure 54 are the nondimensional transverse displacement comparisons of
linear and geometrically nonlinear analyses for [0/90/0] 1x12 geodesically stiffened
shells. The results for the compressive loading load is found in Figure 54b. The nondi-
mensional transverse displacement results indicate that using a geometrically nonlinear
analysis does yield a stiffer structure and consequently slightly smaller transverse dis-
placements than the linear analysis. The maximum difference in the nondimensional
transverse displacements between the linear and nonlinear analysis is 8.9%. The results
for a combined loading are shown in F igure 54b. The addition of internal pressure yields
larger differences and variations in the nondimensional transverse displacements between
the linear and nonlinear analyses than does the case of compressive loading only. As
can be seen from Figure 54b the distribution and magnitude of the nonlinear results are
much difTerent than the linear results. The maximum difference in the displacements is
28.7% for the combined loading condition. Therefore, it can be concluded that the ge-

ometric nonlinearities become more significant with the addition of internal pressure.

The effect of increasing the shell radius is shown in Figure 55. The nondimensional
transverse displacements for shell radii of 857, 170", and 255" subjected to an applied end
compression developed through applied displacements for a [0/90/0] laminate are de-

scribed in Figure 55a. As can be seen, as the shell radius is increased the maximum
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nondimensional transverse displacement is reduced by 52.8% when the shell radius is
increased from 85" to 170”. When the shell radius is increased from 85" to 255" the
maximum nondimensional transverse displacements are reduced 73%. Figure 55b shows
the nondimensional transverse displacements when an internal pressure of 10 psi is
added to the applied end compression loading for varying shell radii. When the radius
is increased from 85" to 170" the maximum transverse increases 47%. Increasing the
shell radius from 85" to 255" increases the transverse displacement by 55.5%. The ad-
dition of internal pressure yields large differences and variations in the nondimensional
transverse displacements as a function of the shell radius. As can be seen from Figure
55b, the distribution of the nondimensional transverse displacements yields a maximum
displacement at the stifTener intersection for the 85" shell, almost a uniform variation
of the displacements for the 170" shell, and a minimum displacement at the stifTener
intersection for the 255" shell. A possible explanation for this phenomena is that for a
constant shell thickness, as the shell radius is increased the ratio of the stifTener stiffness
to the shell stiffness to resist pressure induced deflections increases. Moreover, as the
shell radius is increased the load on the shell due to internal pressure increases and the
stiffeners exert a larger influence on the structural response. This becomes evident with
the addition of pressure loading. In this case the 85 shell has the smallest stiffness ratio
and thus with the addition of pressure the stiffeners tend to deflect more. The 170" shell
has an almost equal ratio and therefore a uniform displacement field is observed. The
255" shell has the largest stiffness ratio and thus with the addition of pressure the shell

deflects more away from the stiffener intersection.

Shown in Figure 56 is a comparison of a [0/90/0] 1x12 geodesically stiffened shell, a
[0/90/0] 1x12 axial/ring stifTfened shell, and a [0/90/0] unstiffened shell. The axial/ring

stiffened shell internal axial and ring stiffeners consisting of 1.0” orthotropic stiffeners.
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The axial/ring stifTened finite element model with appropriate boundary conditions is
shown in Figure 57. The results for compressive end loads are shown in Figure 56a. The
geodesically stiffened shells show the largest transverse displacements of the shells
studied here. The nondimensional transverse displacements for the geodesically stiffened
shells are 91% greater than the displacements for axial/ring stiffened shells and are 90%
greater than the displacements of unstiffened shells. The results for combined loading
is shown in Figure 56b. The geodesically stiffened shells exhibit the largest nondimen-
sional transverse displacements. The geodesically stiffened shells yield nondimensional
transverse displacements 46.3% larger than the axial/ring stiffened shells and are 37.1%
larger than the unstiffened shells. The axial/ring stiffened shells show that the shell
stiffness at the stiffener intersection is much greater than that of the geodesically stiff-
ened shell when internal pressure is applied. In this case the displacements away from
the stiffener intersection are larger than those at the intersection in much the same way

as the displacement field generated via the 255" shell shown in Figure 55b.

The last displacement field analysis involves studying the effects of combined loading
on geodesically stiffened shells. Figure 58 shows the results of these loadings on 0.075",
0.15", and 0.30” [0/90/0] laminates with various stiffener heights. The results show that
the maximum nondimensional transverse displacement occurs at the stiffener inter-
section until the stiffeners reach a critical height at which point the stiffeners are suffi-
ciently stiff in bending to prevent large transverse displacements at the stiffencr
intersection. At this point the shell displacements away from the stiffener intersection
becomes larger than the displacements at the stiffener intersection. The stiffener height
at which this occurs is also a function of the laminate thickness. For example, the
transverse displacement away from the stiffener intersection exceeds the transverse dis-

placement at the stiffener intersection for a stiffener height of 2.0 for a 0.075” laminate,
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4.0" for a 0.15” laminate, and 6.0” for a 0.30" laminate. Therefore, under the action of
compressive load and internal pressure the stiffeners act to decrease the transverse dis-
placements at the stiffener intersection, but only when the stiffeners are sufficiently deep
compared to the laminate thickness do the shell transverse displacements away from the

stifTener intersection exceed those at the stiffener intersection.

This study of the transverse displacement field trends has yielded some interesting re-
sults. The shell laminate layup will have a major factor on the transverse displacement
field. Changing the stiffener height, shell geometry, shell radius, and shell laminate
thickness all have a major impact on the structural response of the stiffened shells. A
geometric nonlinear analysis does not yield major changes in the displacement field for
compressive loading, but honlinearity is significant when pressure is added to the load-
ing. The geometry of the geodesically stiffened shell has a significant impact on the
displacement field. When subjected to combined compression and internal pressure the
transverse displacements of the shell away from the stiffener intersection do not exceed
those at the stiffener intersection until deep stiffeners, a large radius, or an axial/ring
stiffened structure are used. One of the nice features in using the LWTR finite element
code to conduct this design analysis is that it is fairly simple and quick to generate new
models by changing the cell geometry or the stiffener parameters. This is not true for the
Testbed finite element code where a more time consuming effort is needed to generate

models that change shell geometries and/or stiffener heights.
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5.5 Detailed Stress Study

The results presented in this section will focus on interlaminar stresses, but a few exam-
ples of the in-plane stresses a,, and axy, over the region of the entire shell will also be
presented. Interlaminar stresses in the geodesic shells have never been studied in detail
before. The interlaminar stresses over the entire shell structure for a few specific cases
will be presented. This will help to determine the regions of peak interlaminar stresses
and the nature of the stress distribution over the entire region. The interlaminar stresses
at the critical regions, probably near the stiffener intersection, will be studied. The
interlaminar stress distribution through the thickness at the critical regions will be
studied. The effects of the shell laminate layups, laminate thickness, pressure loading,
stiffener height, shell radi, cell geometry, and geometric nonlinearity on the interlaminar
stresses will presented. The base line design used in this study is a [0/90/0] 1x12
geodesically stiffened shell with a shell radius of 85" and 1.0” internal orthotropic
stilfeners. The base line laminate thickness used here is 0.30". The loadings considered
in these analyses are applied compressive end loads generated through applied end dis-
placements of 0.01” on each edge (x=0, Lx) and combined compressive loads and
internal pressure (10 psi). Some of the more interesting interlaminar stress results are
presented in this work. The stresses are nondimensionalized in this study using the fol-

lowing expression:

chlL
R

Qi
I

(5.5)

)‘Zl

Here 7 is the nondimensional stress, ¢ is the generated stress, h is the total laminate

thickness, N, is the applied load, R is the shell radius, and L is the shell length.
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5.5.1 In-Plane Stress Study

The nondimensional in-plane stresses, d,x and @, will be discussed in this section. The
in-plane stress, 3,5, of the inner layer for a [0/90/0] 1x12 geodesically stiffened shell with
1.0” internal stiffeners subjected to an applied end load of 0.01” is shown in Figure 59.
The peak in-plane stresses, G, occur at the boundaries x = 0, Ly and also at the
stiffener intersection x =-[§- Y = —1% The in-plane stresses, G.x, are the largest of the
six stresses and thus are likely to be the primary contributing stresses to cause failure.
By viewing Figure 59 it can be said that failure would most likely occur at the boundaries
(x = 0, Lx) or at the stiffener intersection. Figure 60 is a plot of 3, over the stiffened
shell structure for the outer layer of a [0/90/0] 1x12 geodesically stiffened shell with 1.0
internal orthotropic stiffeners subjected to a compressive end load. The stress distrib-
ution, ., over the surface of the shell in the top layer as shown in Figure 60 yields a
different stress field shape than that generated in the inner layer shown in Figure 61.
The stresses in the outer layer peak at the boundary corners and at the stiffener inter-
section. As can be seen from Figures 59 and 60, the in-plane stresses, Gz, for the inner
layer are more uniformly distributed, particularly at the boundaries than the in-plane
stresses for the outer layer. One possible explanation for this phenomena is that the
stiffeners are attached to the inner layer and this reduces the bending of the inner layer
and in addition some of the load is carried by the stiffeners. This results in more uniform
stresses in the inner layer. The influence of the stiffeners on the outer layers are evi-
denced by the fact that the in-plane stresses are lower at the corners of the boundaries

and at the stiffener intersection. However, at the center of the shell boundaries the in-

fluence of the stiffeners is not as pronounced and more bending occurs. This results in
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the outer layer carrying more load at these locations which produces larger compressive

stresses.

The in-plane stress results, .., for a combined loading on a (0/90/0] 1x12 geodesically
stiffencd shell are shown in Figures 61 and 62. The addition of 10 psi internal pressure
to the geodesically stiffened shell produces significant changes in the stress distribution,
Oxx, IN the inner layer shown in Figure 61 when compared with the inner layer for
compressive loading shown in Figure 59. As the internal pressure is increased these
differences between pure compression and combined loading will become much larger.
The pressure produces a much wider variation of the in-plane stresses and also changes
the peak stresses at the edges and the stiffener intersection. The in-plane stress at the
stiffener intersection for the inner layer subjected to combined loading is reduced by 52%
from the inner layer stress generated from compressive loading. Figure 62 shows the
stress distribution, G,,, for the outer layer for the base line design. The boundaries at x
= 0, Lx are fairly stiff having v = w = ¢ boundary conditions at these locations and
thus the addition of internal pressure results in large compressive bending stresses at the
x boundaries. Away from the boundaries the pressure tends to reduce the compressive
stresses by as much as 84% at the stiffener interior. Thus, adding pressure has a signif-

icant influence on the in-plane stresses of the shell laminate.

A plot of the shear stress, Oy, in the inner layer for the base line design subjected to
combined loading is shown in Figure 63. The shear stresses, Gy, yield a skew-symmetric
nature with the value of the shear stress being 0 at the stiffener intersection. The results
for the application of compressive loading yield the same general shape as the results for
combined loading, but the values of the stresses are about a factor of 10 smaller. Those

results are not included here.
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Figure 59. Surface plot of 7,, for the inner layer of a [0/90/0] I1x12 geodesically stiffened shell under
compressive loading.
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Figure 60. Surface plot of 7,, for the outer

compressive loading,

layer of a [0/90/0] Ix!2 geodesically stiffened shell under
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5.5.2 Interlaminar Normal Stress Study

The distribution of the interlaminar normal stress, o,,, over the shell region for the outer
layer of the base line design subjected to an applied compressive end load is shown in
Figure 64. As can be scen, the interlaminar normal stresses peak at the x boundaries
and also at the stiffener intersection. Along the center line y = % away from the
boundaries the interlaminar normal stresses are larger than those stresses over the re-
mainder of the shell away from the surface. This indicates that the stiffener intersection
has an influence on the interlaminar normal stresses along the line y = % This could
be due to the fact that the transverse displacements do peak at the stiffener intersection.
Adding internal pressure to the preexisting compressive load yields an interlaminar
normal stress distribution in the outer layer as described in Figure 65. Here the
interlaminar normal stresses are significantly greater than for the case of end com-
pression. The general pattern of the stress distribution is the same as that for
compressive end loading only. The interlaminar normal stresses peak at the stiffener
intersection and the interlaminar normal stresses being largest along the line y = %

Pressure does have a significant influence on the interlaminar normal stresses by in-

creasing the interlaminar normal stresses by almost a factor of 4.

Nondimensional interlaminar normal stresses near the stiffener intersection through the
thickness of the shell laminate for various geometries and loadings are presented in this
section. The interlaminar normal stresses generated via combined loading are 400%
larger than the interlaminar normal stresses generated from compressive loading and
thus only combined loading conditions are studied in this section. Figure 66 is a plot
of the interlaminar normal stresses, Gy, near the stiffener intersection for 1x12

geodesically stiffened shells having 1.0” internal orthotropic stiffeners for various shell
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Figure 64. Surface plot of 7, for the outer layer of a [0/90/0] ix12 geodesically stiffened shell under

compressive loading.
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laminates subjected to combined loading. Figure 66 shows that the laminate stacking
sequence has a large impact on the interlaminar normal stress. The
[60/ — 60/0/ — 60/60] and the [ —45/45/90/0]s layups show the largest interlaminar
normal stresses. For example, the maximum nondimensional interlaminar normal
stresses in the [60/ — 60/0/ — 60/60] layup is 66% larger than the maximum nondimen-
sional interlaminar normal stress in the [45/90/0]s. The order of decreasing maximum
nondimensional interlaminar normal stress stresses in the laminates are
[30/ — 30/0/ — 30/30], [ —45/45/90/0]s, [45/ —45/45/—45], [60/— 60/0/ — 60/60],
[0/90/0], and [45/90/0]s. Hence, laminates such as the [45/90/0]s, [0/90/0], and
[60/ — 60/0/ — 6G0/60] are preferable for use in keeping the &,, stresses from becoming

significantly large.

The effects of conducting a geometrically nonlinear analysis on the stresses, 3., for a
combined loading is shown in Figure 67. The nondimensional interlaminar normal
stresses for the geometrically nonlinear analysis are 47.1% less than the stresses devel-
oped from the linear analysis. From the displacement field study shown in Figure 54b
the nonlinear analysis generates smaller displacements than the linear analysis and ob-
viously this results in lower strains and then subsequently lower stresses. Thus, when
pressure loading is included on the structure a geometrically nonlinear analysis will yield
significantly different nondimensional interlaminar normal stresses. The geometrically

nonlinear analysis softens the structure and this reduces the displacements and subse-

quent stresses.

The effect of increasing the stiffener height on the nondimensional interlaminar normal
stress for combined loading is shown in Figure 68. The nondimensional interlaminar

normal stresses show a uniform decrease as the stiffener height is increased. The maxi-
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G1x12, 0/90/0, R=85°, h=0.30", pi=10 psi, del=0.01" 1

-------- G1x12, (45/90/0)s, R=85", h=0.30", pi=10 psi.dei=0.01"

— = G1x12, 30/-30/0/-30/30, R=85", h=0.30°, pi=10 psi, dei=0.01°
= = == G1x12, 45/-45/45/-45, R=85°", h=0.30", pi=10 psi, del=0.01°
===+ G1x12, (-45/45/90/0)s, R=85°, h=0.30°, pi=10 psi, dei=0.01"
= = G1x12, 60/-60/0/60/-60. R=85°, h=0.30". pi=10 psi.dei=0.01"
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Figure 66. Through-the-thickness distribution of ., for G1x12 shell near the stiffener intersection for
various shell laminates under combined loading.
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——— G1x12, 0/90/0, R=85", h=0.30", SH=1.0", pi=10 psi, cei=0.01"
-------- Gix12, 0/90/0, R=85", h=0.30", SH=1.0", pi=10 psi, del=0.01" (nontinear)
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Figure 67. Through-the-thickness distribution of 5, for G1x12 shell near the stiffener intersection for
lincar and gecometrically nonlinear analyses under combined loading.
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mum differences in 5,, between the 1” and 2", 3", 4", and 5~ stifTeners are 6.6%, 18.4%,
27.9%, and 37.5% respectively. The interlaminar normal stress decreases as the stiffener
height increases as expected because the bending stiffness of the stiffeners increases as
a function of the cube of the stifTener height. This increase in bending stifTness tends to
decrease the transverse displacements and consequently the interlaminar normal stress.
It is interesting to note that the height of the stiffener does not affect the overall shape

of the stress through the thickness.

The effect of changing the cell geometry on the nondimensional interlaminar normal
stress for [0/90/0] geodesically stiffened shells subjected to combined loading is shown
in Figure 69. Geodesic cell geometries of 1x10, 1x12, 1x14, and 1x16 are considered in
this analysis. As can be seen from Figure 69 and the displacement results shown in
Figure 51, increasing the number of cells around the circumference causes the shells to
become significantly stiffer because the number of stiffeners in the structure is increased.
This lowers both the transverse displacements and the interlaminar normal stresses. For
example, as the cell geometry is increased from 1x10 to 1x12, 1x14, and 1x16 the non-

dimensional interlaminar normal stresses are reduced 35%, 51%, and 85% respectively.

Shown in Figure 70 are the nondimensional interlaminar normal stress results for in-
creasing the shell radius for [0/90/0] shells subjected to combined loading. The shell
radii considered here are 85%, 1707, 255", The maximum difTerence in nondimensional
interlaminar normal stress is 56% when increasing the shell radius 2 times from 85 to
170" and the difference is 88% when increasing the shell radius 3 times from 85 to 255",
As can be seen there are differences in the nondimensional interlaminar normal stress
distribution. From the results shown in Figure 70 and the transverse displacement re-

sults of Figure 55b it is observed that as the shell radius is increased the influence of the
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—— (G1x12, 0/90/0, R=85", h=0.30", SH=1.0", pi=10 psi, dei=0.01"
-------- G1x12, 0/90/0, R=85", h=0.30", SH=2.0", pi=10 psi, del=0.01"
— = G1x12, 0/90/0, R=85", h=0.30", SH=3.0", pi=10 psi, dei=0.01"
- - - = G1x12, 0/90/0, R=85", h=0.30", SH=4.0", pi=10 psi, del=0.01"
— .- G1x12, 0/90/0, R=85", h=0.30", SH=5.0", pi=10 psi, del=0.01"
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Figure 68. Through-the-thickness distribution of ,, for Gix12 shell near the stiffcner intersection for
varying stiffener heights under combincd loading.
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— G1x10, 0/30/0, R=85", h=0.30", SH=1.0", pi=10 psi, dei=0.01"
-------- G1x12, 0/90/0, R=85", h=0.30", SH=1.0", pi=10 psi, del=0.01"
— — Gix14, 0/90/0, R=85", h=0.30", SH=1.0", pi=10 psi, del=0.01"
---= G1x16, 0/90/0, R=85', h=0.30", SH=1.0°, pi=10 psi, del=0.01"
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Figure 69. Through-the-thickness distribution of ., for G1x12 shell near the stiffencr intersection for
varying the ccll gcometry under combined loading.
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stiffener on thé displacement and interlaminar normal stress fields increases. This is es-
pecially evident when pressure is applied to the shell structure. Moreover, as the shell
and stiffener radius are increased and the shell thickness remains constant, the ratio of
the stiffener stiffness to the shell stiffness increases and the stiffeners’ influence on the

response of the shell is increased.

The nondimensional interlaminar normal stresses for [0/90/0] 1x12 geodesically stiffened
shells subjected to combined loading for variations in the shell laminate thickness are
shown in Figure 71. As expected, changes in shell thickness have a direct effect upon
the interlaminar normal stresses. The nondimensionalized interlaminar stresses are a
strong function of the shell laminate thickness. The maximum differences in nondimen-
sional interlaminar normal stresses between the 0.15" and the 0.30”, 0.45", and 0.60"
laminates are 78%, 89%, and 97% respectively. The bending stiffness of the shell is a
function of the laminate thickness cubed. The smaller the laminate thickness the more

the shell will deflect under pressure loading resulting in larger stresses.

The nondimensional interlaminar normal stresses for a 1x12 geodesically stiffened shell,
1x12 axial/ring stiffened shell, and an unstiffened shell are shown in Figure 72. The re-
sults presented here are for [0/90/0] shells with 1.0” internal orthotropic stiffeners sub-
jected to combined loading. As can be seen the nondimensional interlaminar normal
stresses generated in the geodesically stiffened shell is 67.8% larger than those generated
in the axial/ring stiffened shell and 81.7% larger than those generated from the unstiff-
ened shell. From Figures 56b and 72 it becomes apparent that the geodesic stiffeners
tend to push the stiffener intersection outward which results in larger transverse dis-
placements and stresses near the stiffener intersection than those generated by the

axial/ring stiffened shell system or the unstiffened shells. Apparently, the geodesic
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— G1x12, 0/80/0, R=85", h=0.30", SH=1.0", pi=10 psi, del=0.01"
-------- G1x12, 0/90/0, R=170", h=0.30°, SH=1.0", pi=10 psi, dei=0.01"

— = (1x12, 0/90/0, R=255", h=0.30", SH=1.0", pi=10 psi, del=0.01"
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Figure 70. Through-the-thickness distribution of 7,, for Gix12 shell near the stiffener intersection for
incrcasing shell radii under combined loading.
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-------- G1x12, 0/90/0, R=85", h=0.15", SH=1.0", pi=10 psi, dei=0.01"
———— G1x12, 0/30/0, R=85", h=0.30", SH=1.0", pi=10 psi, del=0.01"
— — G1x12, 0/90/0, R=85", h=0.45", SH=1.0", pi=10 psi. del=0.01"
- - - = G1x12, 0/90/0, R=85", h=0.60", SH=1.0", pi=10 psi, dei=0.01"
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Through-the-thickness distribution of Fu for G1x12 shell near the stiffener intersection for

Figure 71,
increasing shell laminate thickness under combined loading.
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stiffeners at the stiffener intersection are constrained so that the u and v displacements
at that location are 0 because of symmetry and symmetric loading and boundary condi-
tions. However, because of this constraint the stiffeners do exhibit large displacements
in the transverse direction due to the compliance of the stiffener intersection. In addi-
tion, the distribution of the interlaminar normal stresses for the axial/ring stiffened shell
and the geodesically stiffened shell are different. While both stiffened shells exhibit peak
stresses in the bottom (inner) layers of the laminate where the stiffeners are attached, the
axial/ring stiffened shell does not exhibit another peak in the interlaminar normal stress
in the top (outer) layers as does the geodesically stiffened shells. Therefore, it can be
concluded that because the geodesically stiffened shells produce significantly more dis-
placements at the stiffener intersection than the axial/ring stiffened results as seen in
Figure 56b this results in larger interlaminar normal stresses through the entire shell
laminate for the geodesically stiffened shells. The axial/ring stiffened shells are very stiff
at the stiffener intersection which results in smaller displacements at the stiffener inter-
section than away from the intersection (see Figure 56b). Therefore, the influence of the
axial/ring stiffened structure is to cause peak interlaminar normal stresses in the inner
layers of the shell, but because the transverse displacements away from the stiffener
intersection are larger than at the stiffener joint the influence of the axial/ring stiffeners

does not extend to the outer layers of the shell.

The interlaminar normal stresses are influenced by the laminate stacking sequence, ge-
ometric nonlinearity, stiffener height, cell geometry, shell radius, shell laminate thickness,
and the type of shell structure (geodesic or axial/ring stiffened). The shape and magni-
tude of the nondimensional interlaminar normal stress is definitely influenced by the
laminated stacking sequence. Changing the shell geometry, shell laminate thickness, shell

radius, and conducting a geometrically nonlinear analysis all have an impact in the
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— G1x12, 0/90/0, R=85", h=0.30", SH=1.0", pi=10 psi, del=0.01"
-------- Axial/Ring, 1x12, 0/90/0, R=85", h=0.30", SH=1.0", pi=10 psi, del=0.01"
— — Unstitfened, 0/90/0, h=0.30", pi=10 psi, del=0.01"
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Figure 72. Through-the-thickness distribution of g, for G1x12 stiffened, axial/ring stiffcned, and un-
stiffencd shells under combined loading.
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structural response and the interlaminar normal stresses. Comparing a 1x12 geodesically
stiffened shell, 1x12 axial/ring stifTened shell, and an unstiffened shell shows that the
interlaminar normal stresses generated in a geodesically stiffened shell are much larger
than those generated in other types of shells. However, the interlaminar normal stresses
are still an order of magnitude less than the in-plane stresses. The addition of internal
pressure increases the interlaminar normal stresses and therefore large increases in pres-
sure may cause the interlaminar normal stresses to contribute to the failure of the

geodesically stifTened shells.

5.5.3 Interlaminar Shear Stress Study

The interlaminar shear stresses, Oy, are the interlaminar shear stresses having the largest
magnitudes for geodesically stiffened shells and will be studied in this work. The
interlaminar shear stress distribution, 7,,, for the outer layer base line design subjected
to a compressive loading is shown in Figure 73. The interlaminar shear stress surface
plot yields a skew-symmetric stress distribution. The shear stress do not peak at the
stiffener intersection, but rather peak about 3.5" from the stiffener intersection. The
interlaminar shear stress, @,,, over the shell for a combined applied compressive load and
an internal pressure of 10 psi is shown in Figure 74. This reveals that the interlaminar
shear stresses yield similar type of behavior and peak at the same location as shown in
Figure 73. The difference in nondimensional interlaminar shear stress between the
compressive and combined loading is only 28.6%. Thus, a large port: - of the
interlaminar shear stresses, @,,, are generated by the compressive rather tha e pres-
sure loads. The combined loading case does produce larger nondimensional interlaminar

shear stresses by 40% at the x boundaries, x = 0, L,. Combined loading will be used
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to study the interlaminar shear stresses in order to be consistent with the interlaminar

normal stress analyses.

Shown in [igure 75 are the nondimensional interlaminar shear stresses, 3,,, at the lo-
cation of the peak stresses as indicated from the surface plots of Figures 73 and 74 for
various shell laminates. The nondimensional interlaminar shear stresses for the
geodesically stifTfened shells shown in Figure 75 are developed via combined loading.
Clearly due to the influence of the stiffeners and the stacking sequence there is no dis-
tinct pattern for the shear stresses G, The [30/ — 30/0/ — 30/30], [0/90/0], and the
(45/ —45/45] —45] laminates yield the maximum values of the stresses 7,. The
(45/90/0]s laminated stiffened shell yields the smallest nondimensional interlaminar
shear stresses. The diflerence in the nondimensional shear stresses between the
[30/ = 30/0/ — 30/30] shell and the [45/90/0]s shell is 84.5%. Obviously the shell lami-
nate has a definite influence on the interlaminar shear stresses. Laminates such as the
[ —45/45/90/0]s, [45/90/0]s, and [60/ — 60/0/ — 60/60] are preferable for use in keeping

the a,, stresses from becoming significantly large.

In Figure 76, the intcrlaminar shear stresses, Gy, are compared for a linear and a ge-
ometrically nonlinear analysis subjected to combined loading of the base line design.
The results show that the nondimensional interlaminar shear stresses produced from the
linear analysis are 80% larger than those generated from the geometrically nonlinear
analysis. It is clear that a nonlinear analysis does tend to soften the structure, especially

when pressure is applied, thus reducing the resulting displacements, strains, and stresses.

Next, the effect of changing the cell geometry upon the nondimensional interlaminar
shear stresses for a [0/90/0] laminated shell subjected to combined loading is shown in

Figure 77. The results presented here are for 1x10, 1x12, 1x14, and 1x16 geodesically
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Figure 73. Surface plot of 5,, for the outer layer of a [0/90/0] 1xi12
compressive loading.

geodesically stiffened sheil under
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combined loading.
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G1x12, 0/90/0, R=85°, h=0.30°, pi=10 psi, deix0.01°
-------- G1x12, (45/30/0)s, R=85°, h=0.30°, pix10 psi, dei=0.01°

— — GIx12, 30/-30/0/-30/30, R=85", h=0.30", pi=10 psi. dei=0.01°
- = == GIx12, 45/-45/45/-45, R=85°, h=0.30", pix10 psi.dei=0.01"
—— -+ G1x12, (-45/45/90/0)s, RaB5", h=0.30°, pi=10 psi. del=0.01°

= - Gix12 60/-60/0/60/-60. R=85°. h=0.30", pi=10 psi, del=0.01°
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Figure 7S. Through-the-thickness distribution of @ae for G1x12 shell at the critical region for various
shell laminates under combined loading.

Results 220



G1x12, 0/90/0, R=85", h=0.30", SH=1.0", pi=10 psi, dei=0.01"
-------- G1x12, 0/90/0, R=85", h=0.30", SH=1.0", pi=10 psi. del=0.01" (nonlinear)
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Figure 76. Through-the-thickness distribution of 3. for G1x12 shell at the critical region for linear and
geometrically nonlinear analyses under combincd loading.
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stiflened shell models. Obviously as the number of cells around the circumference from
I1x10 to 1x16 the shell becomes stiffer and thus lower interlaminar stresses result. The
resulting differences in the maximum nondimensional interlaminar shear stresses be-

tween the 1x10 and 1x12, 1x14, and 1x16 models are 57%, 86%, and 93% respectively.

Changing the shell laminate thickness for the base line design under combined loading
has a definite impact on the interlaminar stresses g, as shown in Figure 78. The results
presented in Figure 78 are for 0.15", 0.30", 0.45", and 0.60" shell laminate thicknesses.
The nondimensional shear stress results for the 0.15" laminate shell thickness are §7%
greater than those for the 0.30” laminate, 96.2% greater than those for the 0.45” lami-
nate, and 98.2% greater than those for the 0.60” laminate. The bending stiffness of the
shell is a function of the laminate thickness cubed. Under pressure loading the smaller
laminate thicknesses will definitely deflect more and therefore larger interlaminar shear

stresses are developed.

In Figure 79 the eflects of increasing the shell radius on the nondimensional interlaminar
shear stress 7,, under combined loading is described. Shell radii of 85*, 170", and 255~
are considered in this analysis. The shell laminate thickness remains a constant 0.30",
The results presented in Figure 79 clearly show that increasing the shell radius while
holding the shell laminate thickness constant definitely has an impact on the
interlaminar shear stresses. The addition of internal pressure is the loading which brings
out the large variation in the interlaminar shear stress 3,,. As discussed in Section 5.4
concerning Figure 55b, increasing the shell radius while holding the laminate thickness
constant increases the ratio of the stiffener stiffness to the shell stiffness to resist pressure
loading. Thus, near the stiffener intersection for the 255" shell the geodesic stiffeners

have a large influence on the displacement field when pressure is applied and therefore
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——— G1x10, 0/90/0, R=85°, h=0.30", SH=1.0", pi=10 psi, dei=0.01"
-------- G1x12, 0/90/0, R=85", h=0.30", SH=1.0", pi=10 psi, dei=0.01"
— — G1x14, 0/90/0, R=85", h=0.30", SH=1.0°, pi=10 psi, del=0.01"
- --- G1x16, 0/90/0, R=85", h=0.30", SH=1.0°, pi=10 psi, dei=0.01"
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Figure 77. Through-the-thickness distribution of 7., for Gix12 shell at the critical region for changing
ccll geometry under combined loading.

Resuits 223



-------- G1x12, 0/80/0, R=85", h=0.15", SH=1.0", pi=10 psi, del=0.01"
- G1x12, 0/90/0, R=85", h=0.30", SH=1.0", pi=10 psi, del=0.01"

— — G1x12, 0/90/0, R=85", h=0.45", SH=1.0", pi=10 psi, dei=0.01"
- === G1x12, 0/90/0, R=85", h=0.60", SH=1.0", pi=10 psi, dei=0.01"
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Figure 78. Through-the-thickness distribution of 1 for G1x12 shell at the critical region for varying
shell laminate thickness under combined loading.
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larger shear stresses result in the bottom laminate layers near the stiffener intersection.
In fact, the shear stresses change sign through the laminate thickness for the 255" shell.
There appears to be a balance between the increased stiffness created when increasing
the shell radius and the increased loading generated via internal pressure by increasing
the shell radius. Thus, when the shell radius is increased from 85" to 170" the effect of
the increased stiffness is not overcome by the increased loading from the internal pres-
sure and thus the interlaminar stresses decrease. However, when the shell radius is in-
creased from 85" to 255" the increase in loading from internal pressure exceeds the
increase in shell stiffness and thus the interlaminar shear stresses exhibit a large variation

through the laminate thickness.

The last interlaminar shear stress analysis considered here involves 1x12 geodesically
stiffencd shell, 1x12 axial/ring stiffened shell, and an unstiffened shell as shown in Figure
80. The results presented here are for [0/90/0] shells with 1.0” internal orthotropic shells
under combined loading. The results shown in Figure 80 clearly show that the influence
of the stiffeners on the interlaminar shear stresses when compared with an analysis of
an unstiffened shell. The maximum difference between the geodesically stiffened shell
and the unstifTened shell is 93.3% while the maximum difference between the axial/ring
stiffened shell and the unstiffened shell is 95.5%. Also, the distribution of the
interlaminar shear stresses for the axial/ring stiffened shell and the geodesically stiffened
shell are different. While both stiffened shclls exhibit peak stresses in the bottom (inner)
layers of the laminate where the stiffeners are attached, the axial/ring stiffened shell does
not exhibit another peak in the interlaminar shear stress in the top (outer) layers as does
the geodesically stiffened shells. Therefore, it can be concluded that because the
geodesically stiffened shells produce significantly more displacements at the stiffener

intersection than the axial/ring stiffened results as seen in Figure 56b this results in larger
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— G1x12, 0/80/0, R=85", h=0.30°, SH=1.0", pi=10 psi, del=0.01"
-------- G1x12, 0/90/0, R=170", h=0.30", SH=1.0°, pi=10 psi, del=0.01"

— = G1x12, 0/90/0, R=255", h=0.30", SH=1.0", pi=10 psi. dei=0.01"
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Figure 79. Through-the-thickneas distribution of 7,, for G1x12 shell at the critical region for increasing
shell radii under combined loading,
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interlaminar shear stresses through the entire shell laminate for the geodesically stifTened
shells. The axial/ring stiffened shells are very stiff at the stiffener intersection which re-
sults in smaller displacements at the stiffener intersection than away from the inter-
section (see Figure 56b). Therefore, the influence of the axial/ring stiffened structure is
to cause peak interlaminar shear stresses in the inner layers of the shell, but because the
transverse displacements away from the stiffener intersection are larger than at the
stifTener joint the influence of the axial/ring stiffeners does not extend to the outer layers

of the shell.

The impact of laminate stacking sequence, geometric nonlinearity, cell geometry, shell
laminate thickness, shell radius, and shell type (unstiffened, axial/ring stiffened, or
geodesically stiffened) all influence the interlaminar shear stress. Changing any or many
of these parameters will result in significant changes in the interlaminar shear stresses.
However, these shear stresses are in many cases 2 orders of magnitude less than the in-

plane stresses and these shear stresses’ impact on the structural integrity is debatable.

5.6 First-Ply Failure Analysis

The purpose of this study is to determine the primary failure trends for geodesically
stiffened shells. This work is not intended to be a detailed failure study similar to the
research presented by Reddy and Pandey [159], but rather it should be viewed as a pre-
liminary study of the failure of geodesically stiffened shells. The laminate strength values
used in this analysis are given in Table 7. The Tsai-Wu failure criterion discussed in
section 2.6 will be used to determine shell laminate material failure. Shown in Table 27

are a comparison of the results for linear material failure and buckling of [0/90/0] 1x12
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——— G1x12, 0/90/0, R=85", h=0.30", SH=1.0*, pi=10 psi, dei=0.01"
-------- Axial/Ring, 1x12, 0/90/0, R=85", h=0.30", SH=1.0", pi=10 psi, del=0.01"
— = Unstiftened, 0/90/0, h=0.30", pi=10 psi, del=0.01"
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Figure 80. Through-the-thickness distribution of G for Gix12 stiffened, axial/ring stiffened, and un-
stiffencd shells under combined loading.
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geodesically stifTfened shells with 1.0” internal orthotropic stiffeners. Three shell laminate
thicknesses, 0.157, 0.30", and 1.5", were considered in this analysis. Results were ob-
tained for pure compression and for shells subjected to combined loading with internal
pressures of 10 psi and 25 psi. The end displacements were increased incrementally until
failure occurred. The end loads, N, were calculated at first-ply failure. The results of
Table 27 clearly show that for pure compression and combined loading with small to
moderate internal pressures the shell will buckle before material failure occurs. It is also
evident that as the pressure is increased from O psi to 25 psi the difference between the
failure and buckling loads decreases rapidly. The buckling load increases as the pressure
is increased due to the biaxial loading. Because the unit load in the circumferential
(hoop) direction, Ny, is tensile when internal pressure is included, the buckling load, IQI,,
increases due to this biaxial loading condition. The failure load decreases as the pressure

1s increased and thus it is concluded that for larger pressures material failure will occur.

The next study shown in Table 28 is for the analysis of [0/90/0] unstiffened shells,
[0/90/0] 1x12 geodesically stiffened shells, and [45/90/0]s 1x12 geodesically stifTened
shells. A constant shell thickness of 0.30 is used. For these analyses the end displace-
ment is held constant and the internal pressure is increased until material failure occurs.
Applied end displacements of 0.0%, 0.10", and 0.25" were used as the constant end dis-
placements. As can be seen material failure occurs at high pressures, (160 psi - 225 psi),
and this depends upon the shell type and the applied displacements. The failure of the
geodesically stiffened shells occurs at higher pressures than for the unstiffened shells
primarily because of the stress concentrations at the stiffener intersection. As discussed
in sections 5.2, 5.4, and 5.5 the maximum displacements, in-plane stresses, and
interlaminar stresses occur at the stifTener intersection. Shown in Figure 81 is the finite

element model and the location of first-ply failure marked with a circled X. The corners
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of the shell and the stiffener intersection are the locations of first-ply failure for the
geodesically stiffened shells as expected. However, some of the peak stresses at the
corners may be artificially induced by the boundary conditions. The location of the
first-ply failure dclpends upon the laminate layup and the applied end displacements.
The [0/90/0] shells tend to fail at the stifTener intersection first and the [45/90/0]s shells
tend to fail at the shell corners first. The differences in the failure pressures between the
unstiffened and geodesically stiffened shells range from a minimum for 4.4% for the
[0/90/0] geodesically stiffened shell with 0.G" end displacements to a maximum of 15.6%
for the [45/90/0]s geodesically stiffened shell with 0.0” end displacements. The maxi-
mum difference in failure pressures between the [0/90/0] and the [45/90/0]; geodesically
stiffened shells occurs for applied end displacements of 0.0”. The failure pressures of the
geodesically stiffened shells are the same for applied end displacements of 0.25". In all
cases there is a large variation in the applied end load. It can be concluded that material
failure of geodesically stiffened shells will occur for large internal pressures in the vicinity

of the stiffener intersection or the corners of the shell section.
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Chapter 6

Conclusions and Recommendations

6.1 Summary and Conclusions

The purpose of this research was to analyze geodesically stiffened shells using a layerwise
approach. The literature review, theoretical developments, verifications of the analytical
method and computer codes, and the analysis of the stiffened shells were all vital to the
completion of this research. A summary of the major accomplishments of this work

follow:

* Extensive literature review including shell theories, buckling of stiffened shells, finite
element analysis of stiffened shells, failure theories, and calculation of interlaminar

stresses.

¢ Theoretical and computational development of a layerwise discrete Ritz buckling

procedure.
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* Buckling analysis of geodesic, axial, and ring stiffened shells with smeared and finite

element comparisons.

® Theoretical and computational development and subsequent verification of the
layerwise shell and stiffener finite elements with applications to geodesically stiffened

shells and interlaminar stresses.

The literature review provided the groundwork for this research and any subsequent
work which naturally follows from this research. All of the analytical developments were
derived because of a lack of study or knowledge about a particular area or because of

an interest in expanding the database about a certain topic.

The layerwise discrete Ritz analytical buckling procedure was developed to prove the
validity of the layerwise theory for use in the analysis of geodesically stiffened composite
shells. Attachment of the discrete stiffeners was implemented by using the Lagrange
multiplier technique. The layerwise analytical buckling results compare well with the
smeared buckling results and the Testbed finite element results. The layerwise discrete
analytical method yielded more conservative buckling results than the smeared results
and the differences in results ranged from 0% to 70%. This is reasonable because dis-
crete methods should yield more conservative buckling results than the smeared ap-
proaches. A comparison of the Testbed finite element buckling results with the layerwise
discrete results shows that in general for quasi-isotropic and cross-ply laminates the
layerwise theory yields more conservative results. The differcnce between the LWTR
discrete method and the finite element method can be attributed to the fact that the
LWTR method neglects the out-of-plane and the torsional stiffnesses of the stiffeners.
The difference starts to become more pronounced as the stiffener heights increase. This

1s due to the fact that as the stiffener height increases the effects of the out-of-plane and
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the torsional the stiffnesses on the global buckling results increase. The layerwise dis-
crete method may be employed for axial, ring, or geodesically stiffened shells. This
mcethod is only directly applicable to specially orthotropic shells. Reasonable buckling
results should be expected. The layerwise discrete buckling method provides design en-
gineers with an optional tool in the design of stiffened shells based upon buckling. One
of the drawbacks of this method is that it is restricted to shells which have boundary
conditions that are analytically tractable. Run times for this method can be extreme if
a sweep of the buckling modes must be made in order to determine the minimum
eigenvalue. Also, this method is only directly applicable to specially orthotropic shells
where (—,‘15 = 526 = 5;6 = (—,‘45 = 0. However, this method has provided good results

for certain quasi-isotropic materials subjected to in-plane loads.

The layerwise finite element method for geodesically stiffened shells was developed pri-
marily to study the displacement and stress fields in geodesically stiffened shells. Of
particular interest were the interlaminar stresses, Both the layerwise shell and beam el-
ements were developed for this research. The out-of-plane stiffness of the layerwise
beam elements was included by using the ratio of the out-of-plane moment of inertia to
the in-plane moment of inertia. Neglecting the out-of-plane beam stiffness has the
greatest impact when angle ply laminates are used in the shell or beams. For these cases
the finite element method does not yield good results unless the out-of-plane beam
stiffness is included. Developing the beam elements in a layerwise fashion permits the
beam element degrees of freedom to be assembled directly into the global stiffness ma-
trix. Thus, no additional constraint equations are necessary. The layerwise finite ele-
ment program was verified using 10 classical example problems. An additional
comparison of the layerwise finite element method with the Testbed finite element

method was conducted for geodesically stiffened shells and several shell lamination
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schemes. A good correlation of stress results exists between the layerwise analyses and
the Testbed analyses, less than 10%. The small differences occur at the stiffener inter-
section and are due to the different stiffener interaction responses measured by the two

analyses.

A study of the displacements and the stresses for various geodesically stiffened shells was
made using the layerwise finite element method. Varying the shell laminate layup, lam-
inate thickness, stiffener height, stiffener orientation angle, cell geometry, shell radii, and
shell length were all considered . All changes have an impact on the structural response,
some more than others. The displacement field is most affected by changing the shell
laminate layup and the cell geometry. Adding internal pressure to the shell has a major
influence on the displacement response when compared with pure compression. This is
most evident for the geometrically nonlinear case, when the shell radius is increased, and
when axial and ring stiffened shells are considered. When subjected to combined com-
pression and internal pressure the transverse displacements of the shell away from the
stiffener intersection do not exceed those at the stiffener intersection until deep stiffeners,

a large radius, or an axial/ring stiffened structure are used.

Interlaminar normal and shear stresses for geodesically stiffened shells are only signif-
icant when internal pressure is added. The interlaminar normal stresses are influenced
by the laminate layup, geometric nonlinearity, stiffener height, cell geometry, shell ra-
dius, shell laminate thickness, and the type of shell structure. The shape and magnitude
of interlaminar normal stress distribution through the thickness is influenced most by the
laminate layup, shell laminate thickness, and shell type (unstiffened, axial and ring stiff-
ened, or geodesically stiffened). However, the interlaminar normal stresses are an order

of magnitude less than the in-plane compressive stresses, The interlaminar shear streses
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are greatly influenced by the laminate layup, shell laminate thickness, and shell type.
The interlaminar shear stresses are often two orders of magnitude less than the in-plane
stresses. The influence of the interlaminar stresses on the structural integrity of stiffened
shells is small for pure compression and combined loading when the internal pressure is

small.

The failure analysis reveals that unless internal pressure is applied the geodesically stiff-
ened shells will buckle before they experience material failure. Increasing the internal
pressure can create a failure scenario. For large internal pressures failure of geodesically
stiffened shells initiates at the stifTener intersection where the largest displacements and

stresses occur.

The layerwise finite element method provides a useful analytical tool to study the struc-
tural response of geodesically stifTened shells. The layerwise method eliminates the finite
element aspect ratio problem of traditional 3-D finite elements. Also, the layerwise finite
element code was written so that a preprocessor is not needed to generate a large model
and thus it is easier to change variables such as the shell radius, shell length, cell geom-
etry, and stiffener height than for the Testbed models. However, for large problems the
size of the bandwidth can hamper the solution by causing excessive run times and not

converging to the correct solution.

6.2 Recommendations

The recommendations include expanding the existing analytical tools and augmenting
the analyses. The layerwise Ritz method should be expanded to include calculation of

the displacements, strains, and stresses for simply supported cylindrical shells. Including
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the out-of-plane and torsional stiffnesses of the stiffeners used in the Ritz method can
also be included in the future. Employment of layerwise beam elements in the Ritz
method may also be useful. Also, perhaps the layerwise discrete approach could be ex-
tended to other tractable boundary conditions and linear vibration analyses. Develop-
ment of robust postprocessors for both the analytical and finite element codes will
provide the user with plots of the deformed shapes, eigenvectors, and stress contours.
Including the torsional stiffnesses of the layerwise beam elements by assuming a dis-
placement distribution through the thickness of the beam could improve finite element
method. Improvement and/or additional finite element equation solvers could help cir-
cumvent the bandwidth problems for large models. Parallel processing is an option to

consider for very large finite element problems.

A comparison of analytical data with any experimental data will provide useful infor-
mation into the layerwise analyses’ strengths and deficiencies. For example, work by
Boitnott, Johnson, and Starnes [144] included a nonlinear failure analysis of pressurized
composite panels. The work in Ref. [144] compared experimental failure results with
analytical failure results. The analytical analyses were conducted in order to simulate
the actual experimental conditions. The analyses utilized the measured radius,
circumferential slip, and axial strain for each experimental specimen to model the re-
sponse as accurately as possible. The failure analyses of the curved panels described in
Ref. [144] could also be accomplished using a layerwise finite element model, but it will
involve a great deal of work and therefore will be left for future study. A study of
geodesically stiffened shells subjected to high pressures may provide interesting
interlaminar stresses. Additional analyses that incorporate geometric nonlinearity
should be considered. Also, a study of a variety of laminate layups as a function of

various shell and stiffener parameters may provide some unique results and a good da-
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tabase. Additional failure theories and post-ply failure could easily be implemented and
studied. The aforementioned recommendations coupled with the work accomplished in

this research should provide several additional research projects.

Conclusions and Recommendations 240



References

1. Starnes, J. H. Jr., Knight, N. F. Jr., and Rouse, M., “Postbuckling Behavior of
Selected Flat Stiffened Graphite-Epoxy Panels Loaded in Compression,” 4/44
Journal, Vol. 23, No. 8, August 1985, pp. 1236-1246.

2. Knight, N. F. Jr. and Starnes, J. H. Jr., “Postbuckling Behavior of Selected
Curved StifTfened Graphite-Epoxy Panels Loaded in Axial Compression,” 4144
Journal, Vol. 26, No. 3, March 1988, pp. 344-352.

3. Love, A. E. H., “The Small Free Vibrations and Deformation of a Thin Elastic
Shell,” Phil. Trans. Phys. Sci. Royal Society of London, Vol. 199, 1888, pp.
491-546.

4. Sanders, J. L., “An Improved First-Approximation Theory for Thin Shells,”
NASA Technical Report R-24, 1959.

5. Donnell, L. H., “Stability of Thin-Walled Tubes Under Torsion,” NACA Report
No. 479, 1933.

6. Reissner, E., “The Effect of Transverse Shear Deformation on the Bending of
Elastic Plates,” J. of Applied Mechanics, Vol. 12, 1945, pp. A69-AT77.

7. Mindlin, R. D., “Influence of Rotary Inertia and Shear on Flexural Motions
of Isotropic Elastic Plates,” J. of Applied Mechanics , Vol. 18, 1951, pp. 31-38.

8. Reissner, E., “A New Derivation of the Equations for the Deformation of
Elastic Shells,” American Journal of Mathematics , Vol. 63, 1941, pp. 177-184.

9. Reissner, E., “Stress Strain Relations in the Theory of Thin Elastic Shells,” J.
of Mathematics and Physics, Vol. 3, July 1952, pp. 109-119.

References 241



10.

1.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21

22.

23.

References

Reissner, E., “A Note on Generating Generalized Two-Dimensional Plate and
Shell Theories,” J. of Applicd Math. and Physics (ZAMP), Vol. 28, 1977, Pp-
633-642.

Naghdi, P. M., “A Survey of Recent Progress in the Theory of Elastic Shells,”
Appl. Mech. Reviews, Vol. 9, No. 9, Sept. 1956, pp. 365-368. '

Bert, C. W., “Analysis of Shells,” Composite Materials Volume 7, Structural
Design and Analysis Part I, C. C. Chamis, editor, Academic Press, 1975, pp.
207-258.

Krauss, H., Thin Elastic Shells, John Wiley and Sons, Inc., New York, NY,,
1967.

Flugge, W., Stresses in Shells, Julius Springer, Berlin, Germany, 1960.

Ambartsumyan, S. A., Theory of Anisotropic Shells, Moscow, 1961, English
Translation, NASA TT F118, May 1964.

Ambartsumyan, S. A., “Calculation of Laminated Anisotropic Shells ,” Izvestiia
Akademiia Nauk Armenskoi SSR, Ser. Fiz. Mat. Est. Tekh. Nauk., Vol. 6, No.
3, 1953, p. 15.

Dong, S. B., Pister, K. S., and Taylor, R. L., “On the Theory of Laminated
Anisotropic Shells and Plates,” J. of the Aerospace Sciences, Vol. 29, No. 7, July
1962, pp. 969-975.

Reissner, E. and Stavsky, Y., “Bending and Stretching of Certain Types of
Heterogeneous Aeolotropic Elastic Plates,” J. Appl. Mech., Paper No.
61-APM-21, 1961.

Cheng, S. and Ho, B. P. C., “Stability of Heterogeneous Aeolotropic Cylindrical
Shells Under Combined Loading,” 4144 Journal, Vol. 1, No. 4, April 1963, pp.
892-898.

Widera, G. E. O., “Asymptotic Theories for the Unsymmetric Vibrations of
Cylindrical Shells,” J. of Appl. Math. and Physics (ZAMP), Vol. 21, 1970, PpP-
378-399.

Widera, G. E. O. and Logan, D. L., “Refined Theories for Nonhomogeneous
Anisotropic Cylindrical Shells : Part I - Derivation,” J. Eng. Mech. Div., 106
(EMS6), 1980, pp. 1053-1074.

Logan, D. L. and Widera, G. E. O., “Refined Theories for Nonhomogeneous
Anisotropic Cylindrical Shells : Part I - Application,” J. Eng. Mech. Div., 106
(EM6), 1980, pp. 1075-1090.

Reddy, J. N., “Exact Solutions of Moderately Thick Laminated Shells,” J. Eng.
Mech., ASCE, Vol. 110, No. 3, May 1984, pp. 794-809.

242



24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

References

Gulati, S. T. and Essenburg, F., “ Effects of Anisotropy in Axisymmetric Cy-
lindrical Shells,” J. Appl. Mech., Vol. 34, September 1967, pp. 659-666.

Hsu, T. M. and Wang, J. T. S., “A Theory of Laminated Cylindrical Shells
Consisting of Layers of Orthotropic Laminae,” A/44 Journal, Vol. 8, No. 12,
December 1970, pp. 2141-2146.

Zukas, J. A. and Vinson, J. R,, “Laminated Transversely Isotropic Cylindrical
Shells,” J. Appl. Mech., Vol. 38, June 1971, pp. 400-407.

Dong, S. B. and Tso, F. K. W,, “On a Laminated Orthotropic Shell Theory
Including Transverse Shear Deformation,” J. Appl. Mech., Vol. 39, December
1972, pp. 1091-1097.

Naghdi, P. M., “On a Variational Theorem in Elasticity and Its Application to
Shell Theory,” J. Appl. Mech., Vol. 31, No. 4, Trans. ASME, Vol. 86, Series E,
Dec. 1964, pp. 647-653.

Naghdi, P. M., “On the DifTerential Equations of the Linear Theory of Elastic
Shells,” Proceedings of the Eleventh International Congress of Applied
Mechanics, Munich, 1964.

Whitney, J. M. and Sun, C. T., “A Higher Order Theory for Extensional Mo-
tion of Laminated Composites,” J. of Sound and Vibration, Vol. 30, 1973, pp.
85-97.

Whitney, J. M. and Sun, C. T., “A Refined Theory for Laminated Anisotropic
Cylindrical Shells,” J. Appl. Mech., Vol. 41, 1974, pp. 471-476.

Reddy, J. N., “Bending of Laminated Anisotropic Shells by a Shear Deformable
Finite Element,” Fibre Science and Tech., Vol. 17, 1982, pp. 9-24.

Reddy, J. N. and Liuy, C. F., “A Higher-Order Shear Deformation Theory of
Laminated Elastic Shells,” J. Eng. Sci., Vol. 23, No. 3, 1985, pp. 319-330.

Librescu, L., “Refined Geometrically Nonlinear Theories of Anisotropic Lami-
nated Shells,” Quarterly of Appl. Math., April 1987, pp. 1-22.

Librescu, L., “Geometrically Non-Linear Theory of Shear Deformable
Anisotropic Laminated Composite Shallow Shells,” Proceedings, 7th ASCE
Engineering Mechanics Specialty Conference, Blacksburg, VA, 1988, pp.
283-293.

Reddy, J. N., “A Generalization of Two-Dimensional Theories of Laminated
Composite Plates,” Commun. Appl. Num. Meth., Vol. 3, 1987, pp. 173-180.

Reddy, J. N., 4 Layer-Wise Shell Theory With Applications to Buckling and V-

bration of Cross-Ply Laminated Stiffened Circular Cylindrical Shells, Virginia
Polytechnic Institute and State University, CCMS-92-01, January 1992.

243



38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

5L

52

References

Barbero, E. J., Reddy, J. N., and Teply, J. L., “General Two-Dimensional
Theory of Laminated Cylindrical Shells,” 4744 Journal, Vol. 28, No. 3, March
1990, pp. 544-533.

Bert, C. W. and Francis, P. H., “Composite Material Mechanics : Structural
Mechanics,” 4144 Journal, Vol. 12, No. 9, Sept. 1974, pp. 1173-1186.

Kapania, R. K., “Analysis of Laminated Shells,” Journal of Pressure Vessel
Technology, Vol. 111, May 1989, pp. 88-96.

Zienkiewicz, O. C., The Finite Element Method, McGraw-Hill, NY, 1976.

Gallagher, R. H., “Shell Elements,” Proceedings of World Congress on Finite
Elements in Structural Mechanics, Vol. 1, Bournemouth, England, 1975.

Irons, B. M., “Engineering Application of Numerical Integration in Stiffness
Methods,” 4744 Journal, Vol. 4, 1966, pp. 2035-2037.

Ergatoudis, 1., Irons, B. M., and Zienkiewicz, O. C., “Curved Isoparametric
Quadrilateral Element,” In:. J. Solids Struct., Vol. 4, 1968, pp. 31-42.

Ahmad, S., Irons, B. M., and Zienkiewicz, O. C., “Analysis of Thick and Thin
Shell Structures by Curved Finite Elements,” Int. J. Num. Me:h. Lng., Vol. 2,
1970, pp. 419-451.

Bathe, K. J., Finite Element Proceedures in Engineering Analysis, Prentice Hall,
N.J., 1982.

Chao, W. C. and Reddy, J. N., “Analysis of Laminated Composite Shells Using
a Degenerated 3-D Element,” Inr. J. Num. Meth. Eng., Vol. 20, 1984, pp.
1991-2007.

Chang, T. Y. and Sawamiphakdi, K., “Large Deformation Analysis of Lami-
nated Shells by Finite Element Method,” Computers and Structures, Vol. 13,
1981, pp. 331-340.

Wung, P. M., Large Deformation Analysis of Laminated Composite Structures
by a Continuum-Based Shell Element with Transverse Deformation, Ph.D. Dis-
sertation, Virginia Polytechnic Institute and State University, June 1989,

Dong, S. B., “Analysis of Laminated Shells of Revolution,” J. Eng. Mech.
Div., ASCE, (92) EMé6, 1966.

Wilson, E. A. and Parsons, B., “The Finite Element Analysis of Filament-
Reinforced Axisymmetric Bodies,” Fibre Sci. Tech., Vol. 2, 1969, pp. 155-166.

Schmit, L. A. Jr. and Monforton, G. R., “Finite Deflection Discrete Element

Analysis of Sandwich Plates and Cylindrical Shells with Laminated Faces,”
AIAA Journal, Vol. 8, No. 8, August 1970, pp. 1454-1461.

244



53.

54.

5S.

56.

57.

58.

59.

60.

6l.

62.

63.

65.

66.

67.

References

Panda, S. C. and Natarajan, R., “Finite Element Analysis of Laminated Shells
of Revolution,” Computers and Structures, Vol. 6, 1976, pp. 61-64.

Rao, K. P., “A Rectangular Laminated Anisotopic Shallow Thin Shell Finite
Elecment,” Comp. Meth. Appl. Mech. Eng., 15, 1978, pp. 13-33.

Noor, A. K. and Andersen, C. M., “Mixed Isoparametric Finite Element
Models of Laminated Composite Shells,” Comp. Meth. Appl. Mech. Eng., 11,
1977, pp. 255-280.

Yaghmai, S. and Popov, E. P, “Incremental Analysis of Large Deflections of
Shells of Revolution,” Int. J. Solids Struct., Vol. 7, 1971, pp. 1375-1393.

Bathe, K. J. and Bolourchi, S., “A Geometric and Material Nonlinear Plate and
Shell Element,” Computers and Structures, Vol. 11, 1980, pp. 23-48.

Saigal, S., Kapania, R. K., and Yang, T. Y., “Geometrically Nonlinear Finite
Element Analysis of Imperfect Laminated Shells,” Journal of Composite Mate-
rials, Vol. 20, No. 2, March, 1986, pp. 197-214.

Wagner, W. and Stein, E., “A New Finite Element Formulation For Cylindrical
Shells of Composite Material,” Composites Engineering, Vol. 3, No. 9, 1993, pp.
899-910.

Yamaki, N., Elastic Stability of Circular Cylindrical Shells , North-Holland Se-
ries in Applied Mathematics and Mechanics, 1984.

Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells,
McGraw-Hill, NY, 1959.

Donnell, L. H., “A New Theory for the Buckling of Thin Cylinders Under Axial
Compression and Bending,” Trans. Am Soc. Mech. Engrs., Vol. 56, 1934, pp.
795-806.

von Karman, T. and Tsien, H. S., “The Buckling of Thin Cylindrical Shells
Under Axial Compression,” Journal of the Aeronautical Sciences, Vol. 8, No. 8,
June 1941, pp. 303-312.

Tsien, H. S., “A Theory for the Buckling of Thin Shells,” Journal of the Aer-
onautical Sciences, Vol. 9, No. 10, August 1942, pp. 373-384.

Batdorf, S. B., “A Simplified Method of Elastic-Stability of Axially Compressed
Cylindrical Shells,” NACA Report No. 874, 1947.

Stein, M., “The Influence of Prebuckling Deformations and Stresses on the
Buckling of Perfect Cylinders,” NASA TR R-190, Feb. 1964.

Almroth, B. O., “Influence of Edge Conditions on the Stability of Axially

Compressed Cylindrical Shells,” 4144 Journal, Vol. 4, No. 1, January 1966, pp.
134-140.

248



68.

69.

70.

71.

72.

73.

74.

7S.

76.

77.

78.

79.

80.

81.

References

Leissa, A. W, “Buckling of Laminated Composite Plates and Shel] Panels,”
Air Force Wright Aeronautical Lab., AFWAL-TR-85-3069, 1985, pp. 969-975.

Lei, M. M. and Cheng, S, “Buckling of Composite and Homogeneous
Isotropic Cylindrical Shells Under Axial and Radial Loading,” J. dppl. Mech.,
Dec. 1969, pp. 791-798.

Tennyson, R. C. and Muggeridge, D. B., “Buckling of Laminated Anisotropic
Imperfect Circular Cylinders Under Axial Compression,” J. Spacecraft, Vol. 10,
No. 2, Feb. 1973, pp. 143-148.

Jones, R. M. and Morgan, H. S., “Buckling and Vibration of Cross-Plv Lami-
nated Circular Cylindrical Shells,” 4/4A4 Journal, Vol. 13, No. 5, May 175, pp.
664-671.

Hirano, Y., “Buckling of Angle-Ply Laminated Circular Cylindrical Shells,” J.
Appl. Mech., Vol. 46, March 1979, pp. 233-234.

Greenberg, J. B. and Stavsky, Y., “Stability and Vibrations of Compressed,
Aeolotropic, Composite Cylindrical Shells,” J. Appl. Mech., Vol. 49, Dec. 1982,
pp. 843-848.

Tennyson, R. C., “Buckling of Laminated Composite Cylinders : A Review,”
Composites, Jan. 1975, pp. 17-24.

Ho, B. P. C. and Cheng, S., “Some Problems in Stability of Heterogeneous
Aeolotropic Cylindrical Shells Under Combined Loading,” 4144 Journal, Vol.
1, No. 7, July 1963, pp. 1603-1607.

Tsai, J., “Effect of Heterogeneity on the Stability of Composite Cylindrical
Shells Under Axial Compression,” 4/44 Journal, Vol. 4, No. 6, June 1966, pp.
1058-1062.

Perry, T. and Miller, Z., “A Study of the Jones’ Equation for Buckling of
Laminated Composite Cylinders Under External Hydrostatic Pressure,” Journal
of Ship Research, Vol. 37, No. 3, Sept. 1993, pp. 239-252.

Van der Neut, A., “The General Instability of Stiffened Cylindrical Shells Under
Axial Compression,” Report S-314, National Aeronautical Research Institute,
Amsterdam, The Netherlands, 1947.

Baruch, M. and Singer, J., “Effect of Eccentricity of Stiffeners on the General
Instability of Stiffened Cylindrical Shells Under Hydrostatic Pressure,” Journal
of Mechanical Engineering Science, Vol. 5, No. 1, 1963, pp. 23-27.

Hedgepeth, J. M. and Hall, D. B, “Stability of Stiffened Cylinders,” 4744
Journal, Vol. 3, No. 12, Dec. 1965, pp. 2275-2286.

Singer, J., Baruch, M., and Harari, O., “Inversion of the Eccentricity Effect in
Stiffened Cylindrical Shells Buckling Under External Pressure,” Journal of Me-
chanical Engineering Science, Vol. 8, No. 4, 1966, pp. 363-373.

246



82.

83.

84.

83.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

Singer, J., Baruch, M., and Harari, O., “On the Stability of Eccentrically Stifl-
ened Cylindrical Shells Under Axial Compression,” Int. J. Solids Structures,
Vol. 3, 1967, pp. 443-470.

Block, D. L., Card, M. T., and Mikulas, M. M., Jr., “Buckling of Eccentrically
Stiffened Orthotropic Cylinders,” NASA TN D-2960, Aug. 1965.

McElman, J. A., Mikulas, M. M., Jr.,, and Stein, M., “Static and Dynamic Ef-
fects of Eccentric Stiffening of Plates and Cylindrical Shells,” A/4A4 Journal,
Vol. 4, No. 5, May 1966, pp. 887-894.

Card, M. F., “Preliminary Results of Compression Tests on Cylinders with Ec-
centric Stiffeners,” NASA TM X-1004, September 1964.

Card, M. F. and Jones, R. M., “Experimental and Theoretical Results for
Buckling of Eccentrically Stiffened Cylinders,” NASA TN D-3639, Oct. 1966.

Simitses, G. J., “Instability of Orthotropic Cylindrical Shells Under Combined
Torsion and Hydrostatic Pressure,” AI4A Journal, Vol. 5, No. 8, August 1967,
pp. 1463-1469.

Simitses, G. J., “A Note on the General Instability of Eccentrically Stiffened
Cylinders,” J. Aircraft, Vol. 4, No. §, Sept.-Oct. 1967, pp. 473-475.

Simitses, G. J., “Buckling of Eécentrically Stiffened Cylinders Under Torsion,”
AIAA Journal, Vol. 6, No. 10, Oct. 1968, pp. 1856-1860.

Jones, R. M., “Buckling of Circular Cylindrical Shells with Multiple
Orthotropic Layers and Eccentric Stiffeners,” 4144 Journal, Vol. 6, No. 12,
Dec. 1968, pp. 2301-2305.

Jones, R. M., “Buckling of Stiffened Multilayer Circular Cylindrical Shells with
DifTerent Orthotropic Moduli in Tension and Compression,” AI4A Journal,
Vol. 9, No. §, May 1971, pp. 917-923.

Soong, T. C., “Buckling of Cylindrical Shells with Eccentric Spiral-Type
Stiffeners,” AIAA Journal, Vol. 7, No. 1, Jan. 1969, pp. 65-72.

Meyer, R. R., “Buckling of 45° Eccentric-Stiffened Waffle Cylinders,” J. of the
Royal Aeronautical Society, July 1967, pp. 516-520.

Rehfield, L. W., Deo, R. B., and Renieri, G. D., “Continuous Filament Ad-
vanced Composite Isogrid: A Promising Structural Concept,” Fibrous Compos-
ites in Structural Design, Plenum Publishing Corp., 1980, pp. 215-239.

Reddy, A. D., Valisetty, R. R., and Rehfield, L. W., “Continuous Filament
Wound Composite Concepts for Aircraft Fuselage Structures,” J. Aircraft, Vol.
22, No. 3, March 1985, pp. 249-255.

References 247



96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

References

Shaw, 1. S. and Simitses, G. J., “Nonlinear Analysis of Axially-Loaded Lami-
nated Cylindrical Shells,” Computers and Structures, Vol. 16, No. 1-4, 1983, pp.
131-137.

Franklin, H. G., “Membrane Solution of the Spirally Corrugated Shell,” 4744
Journal, Vol. §, No. 2, Feb. 1967, pp. 295-300.

Pappas, M. and Amba-Rao, C. L., “Structural Synthesis of Thin Cylindrical
Shells with Spiral-Type StifTcners,” A/AA Journal, Vol. 8, No. 8, Aug. 1970, pp.
1529-1530.

Karmakar, R. “Axially Compressed Optimum Cylinder-Comparison of Stiffener
Configurations,” J. Spacecraft, Vol. 17, No. 5, Sept.-Oct. 1980, pp. 477-479.

Egle, D. M. and Sewall, J. L., “An Analysis of Free Vibrations of Orthogonally
Stiffened Cylindrical Shells with Stiffeners Treated as Discrete Elements,” 4744
Journal, Vol. 6, No. 3, March 1968, pp. 518-526.

McDonald, D., “A Problem in the Free Vibration of Stiffened Cylindrical
Shells,” A1AA Journals, Vol. 8, No. 2, Feb. 1970, pp. 252-258.

Rinehart, S. A. and Wang, J. T. S., “Vibrations of Simply Supported Cylindrical
Shells with Longitudinal Stiffeners,” J. of Sound and Vibration, Vol. 24, No. 2,
1972, pp. 151-163.

Wang, J. T. S. and Rinehart, S. A., “Free Vibrations of Longitudinally Stiffened
Cylindrical Shells,” J. Appl. Mech., Vol. 41, 1974, pp. 1087-1093.

Moe, J. “Stability of Rib-Reinforced Cylindrical Shells Under Lateral
Pressure,” Publications, Vol. 18, 1958, International Association for Bridge and
Structural Engineering, pp. 113-136.

Van der Neut, A., “General Instability of Orthogonally Stiffened Cylindrical
Shells,” NASA TN D-1510, 1962, pp. 309-319.

MacNeal, K. H., Winemiller, A. F., and Baile, J. A., “Elastic Stability of Cy-
lindrical Shells Reinforced by One or Two Frames and Subjected to External
Radial Pressure,” 4144 Journal, Vol. 4, No. 8, Aug. 1966, pp. 1431-1433.

Singer, J. and Haftka, R., “Buckling of Discretely Ring Stiffened Cylindrical
Shells,” TAE Rept. 67, Aug. 1967, Israel Inst. of Technology, Haifa.

Wang, J. T. S., “Orthogonally Stiffened Cylindrical Shells Subjected to Internal
Pressure,” 4144 Journal, Vol. 6, 1970, pp. 455-461.

Wang, J. T. S. and Lin, Y. J., “Stability of Discretely Stringer-Stiffened Cylin-
drical Shells,” A/44 Journal, Vol. 11, No. 6, June 1973, pp. 810-814.

Wang, J. T. S. and Hsu, T. M., “Discrete Analysis of Stiffened Composite Cy-
lindrical Shells,” 4144 Journal, Vol. 23, No. 11, Nov. 19885, pp. 1753-1761.

248



1Tl

112.

113.

114.

115.

116.

117.

118.

119.

120.

121,

122.

123.

References

Pochtman, Y. M. and Tugai, O. V., “Stability and Optimal Design of Multi-
laver Composite Cylindrical Shells Stiffened with a Polyregular System of Cross
Ribs,” Mechanics of Composite Materials, Vol. 15, No. 1, July 1979, pp. 77-83.

Chao, C. C.,, Kuo, W. S, and Lin, I. S., “Buckling of UnstifTened,Stiffened
Orthotropic Foam Sandwich Cylindrical Shells,” Composite Structures 3, 1985,
pp. 452-467.

Birman, V., “Divergence Instability of Reinforced Composite Cylindrical
Shells,” Recent Advances in the Marco- and Micro- Mechanics of Composite
Materials and Structures, Proceedings of the Symposium, ASME Winter Annual
Meeting, Chicago, Il., Nov. 27 - Dec. 2, 1988, NY, ASME, pp. 169-175.

Lee, R. L. and Lu, S. Y., “General Instability of Inclined-Stiffened Cylinders
Under Bending,” J. Appl. Mech., Sept. 1969, pp. 403-407.

Stephens, W. B., “Imperfection Sensitivity of Axially Compressed Stringer Re-
inforced Cylindrical Panels Under Internal Pressure,” 4144 Journal, Vol. 9,
No. 9, Sept. 1971, pp. 1713-1719.

Tvergaard, V., “Buckling of Elastic-Plastic Cylindrical Panel Under Axial
Compression,” Int. J. Solids and Struct., Vol. 13, 1977, pp. 957-970.

Reddy, B. D., “Buckling of Elastic-Plastic Discretely Stiffened Cylinders in Ax-
ial Compression,” Int. J. Solids and Struct., Vol. 16, 1980, pp. 313-328.

Budiansky, B. and Hu, P. C., “The Lagrangian Multiplier Method of Finding
Upper and Lower Limits to Critical Stresses of Clamped Plates,” NACA TN
No. 1103, 1946.

Budiansky, B., Hu, P. C., and Conor, R. W., “Notes on the Lagrangian Multi-
plier Method In Elastic-Stability Analysis,” NACA, TN No. 1558, May 1948.

Al-Shareedah, E. M. and Seireg, A. A., “Use of Undetermined Multipliers in the
Solution of Complex Plate Problems,” Computers in Mechanical Engineering,
Vol. 4, No. 3, Nov. 1985, pp. 59-68.

Al-Shareedah, E. M. and Seireg, A. A., “The Design of Slabs With Constrain-
ing Columns Using the Undeter:iined Multiplier Method,” Computers in Me-
chanical Engineering, Vol. 4, No. 4, Jan. 1986, pp. 59-68.

Al-Shareedah, E. M. and Seireg, A. A., “Use of Undetermined Multipliers in the
Design of Stiflened Plates,” Computers in Mechanical Engineering, Vol. 4, No.
5, March 1986, pp. 57-64.

Phillips, J. L. and Girdal, Z., Structural Analysis and Optimum Design of

Geodesically Stiffened Composite Panels, Virginia Polytechnic Institute and
State University, CCMS-90-05, July 1990.

249



124. Johnson, E. R. and Rastogi, N., “Interacting Loads in an Orthogonally Stifl-
ened Composite Cylindrical Shell,” 35tk Structures, Structural Dynamics, and
Mazerials Conference, April 18-22, 1994, AlAA-94-1646, Part 5, pp. 2607-2620.

125. Mukhopadhyay, M., “Stiffened Plate Plane Stress Elements for the Analysis of
Ships” Structures,” Comput. Struct., Vol. 13, 1981, pp. 563-573.

126. Mukhopadhyay, M. and Satsangi, S. K., “Isoparametric Stiffened Plate Bend-
ing Element (or the Analysis of Ships’ Structures,” Trans. R. Inst. Naval Arch.,
1983, pp. 141-151.

127. Thompson, P. A., Bettess, P., and Caldwell, J. B., “An Isoparametric Eccen-
trically Stiffened Plate Bending Element,” Eng. Comput., Vol. 5, June 1988, pp.
110-116.

128. Deb, A. and Booton, M., “Finite Element Models for Stiffening Plates Under
Transverse Loading,” Comput. Struct., Vol. 28, No. 3, 1988, pp. 361-372.

129. Yurkovich, R. N., Schmidt, J. H., and Zak, A. R, “Dynamic Analysis of Stiff-
ened Panel Structures,” J. Aircraft, Vol. 8, No. 3, March 1971, pp. 149-155.

130. Nair, P. S. and Rao, M. S., “On Vibration of Plates with Varying Stiffener
Length,” J. Sound and Vibration, Vol. 95, No. I, 1984, pp. 19-29.

131. Kohnke, P. C. and Schnobrich, N. C., “Analysis of Eccentrically Stiffened Cy-
lindrical Shells,” J. Struct. Div., ASCE, Vol. 98, St. 7, July 1972, pp. 1493-1510.

132. Venkatesh, A. and Rao, K. P., “A Laminated Anisotropic Curved Beam and
Shell Stiffening Finite Element,” Computers and Structures, Vol. 15, No. 2,
1982, pp. 197-201.

133. Venkatesh, A. and Rao, K. P., “Analysis of Laminated Shells With Laminated
Stiffeners Using Rectangular Shell Finite Elements,” Comp. Meth. Appl.
Mech., Vol. 38, 1983, pp. 255-272.

134, Venkatesh, A. and Rao, K. P., “Analysis of Laminated Shells of Revolution
with Laminated Stiffeners Using a Doubly Curved Quadrilateral Finite Ele-
ment,” Computers and Structures, Vol. 20, No. 4, 1985, pp. 669-682.

135. Venkatesh, A., Ramana Murthy, P. V., and Rao, K. P., “Finite Element Anal-
ysis of Bimodulus Composite Stiffened Thin Shells of Revolution,” Computers
and Structures, Vol. 22, No. 1, 1986, pp. 13-24.

136. Bhimaraddi, A., Carr, A. J., and Moss, P. J., “Finite Element Analysis of
Laminated Shells of Revolution With Laminated Stiffeners,” Computers and
Structures, Vol. 33, No. 1, 1989, pp. 295-305.

137. Ferguson, G. H. and Clark, R. D., “A Variable Thickness, Curved Beam and

Shell Stiffening Element With Shear Deformation,” Int. J. Num. Me:h. Eng.,
Vol. 14, 1979, pp. 581-592.

References 250



138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.
151

Liao, C. L. and Reddy, J. N., “Continuum-Based StifTfened Composite Shell
Element for Geometrically Nonlinear Analysis,” 4/4A4 Journal, Vol. 27, No. 1,
Jan. 1989, pp. 95-101.

Liao, C. L. and Reddy, J. N., “Analysis of Anisotropic, Stiffened Composite
Laminates Using a Continuum-Based Shell Element,” Computers and
Structures,. Vol. 34, No. 6, 1990, pp. 805-815. ‘

Carr, A. J. and Clough, R. W., “Dynamic Earthquake Behaviour of Shell
Roofs,” Fourth World Conf. on Earthquake Engineering , Santiago, Chile, 1969,
pp. 171-185.

Sandhu, J. S., Stevens, K. A., and Davies, G. A. O., “Torsional Buckling and
Post-Buckling of Composite Geodetic Cylinders with Special Reference to Joint
Flexibility,” Composite Structures, 15, 1990, pp. 301-322.

Hansen, J. S. and Tennyson, R. C., “Study of the Dynamic Behaviour of Stiff-
ened Composite Fuselage Shell Stuctures,” Energy Absorption of Aircraft
Stuctures as an Aspect of Crashworthiness, AGARD-CP-433, 1988, pp. 15-1 -
15-12.

Leissa, A. W. and Qatu, M., “Stress and Deflection Analysis of Composite
Cantilevered Shallow Shells,” Journal of Engineering Mechanics, Vol. 117, No.
4, April 1991, pp. 893-906.

Boitnott, R. L., Johnson, E. R., and Starnes, J. H., “Nonlinear Response and
Failure Characteristics of Internally Pressurized Composite Cylindrical
Panels,” Virginia Polytechnic Institute and State University, CCMS-85-07,
June 198S.

Spier, E. E., “Crippling/Column Buckling Analysis and Test of Graphite/Epoxy
Stiffened Panels,” AIAA/ASME|SAE 16th Structures, Structural Dynamics and
Materials Conference, Denver, CO, May 27-29, 1975, pp. 1-16.

Sandhu, R. S., “A Survey of Failure Theories of Isotropic and Anisotropic
Materials,” Technical Report, AFFDL-TR-72-71.

Tsai, S. W., “A Survey of Macroscopic Failure Criteria for Composite Materi-
als,” Technical Report, AFWAL-TR-84-4025.

Tsai, S. W. and Hahn, H. T., “Failure Analysis of Composite Materials,” Ine-
lastic Behavior of Composite Materials, ASME, 1975, pp. 73-96.

Nahas, M. N., “Survey of Failure and Post-Failure Theories of Laminated
Fibre-Reinforced Composites,” J. Composites Tech. and Research, Vol. 8, 1986,
pp. 138-153.

Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, 1950.

Azzi, V. D. and Tsai, S. W., “Anisotropic Strength of Composites,” Exper-
imental Mechanics, Vol. §, 1965, pp. 283-288.

References 251



152.

153.

154.

155.

156.

157.

158,

159.

160.

161.

162.

163.

164.

165.

166.

References

Chamis, C. C., “Failure Criteria for Filamentary Composites,” Composite Ma-
terials: Testing and Design, STP 460, ASTM, Philadelphia, PA, 1969, pp.
336-351.

Hoflman, O., “The Brittle Strength of Orthotropic Materials,” J. Composite
Materials, Vol. 1, 1967, pp. 200-206.

Tsai, S. W. and Wu, E. M., “A General Theory of Strength for Anisotropic
Materials,” J. Composite Materials, Vol. 5, Jan. (971, pp. 58-80.

Hashin, Z., “Failure Criteria for Unidirectional Fiber Composites,” J. Appl.
Mech., Vol. 47, June 1980, pp. 329-334.

Craddock, J. N. and Zak, A. R., “Nonlinear Response of Composite Material
Structures,” J. Composite Materials, Vol. 11, April 1977, pp. 204-221.

Sanders, R. C., Edge, E. C., and Grant, P., “Basic Failure Mechanisms of
Laminated Composites and Related Aircraft Design Implications,” Composite
Structures 2, Proceedings of the 2nd Int. Conf. on Composite Materials, Scotland,
1983, pp. 467-484.

Cope, R. D. and Pipes, R. B., “Design of the Composite Spar-Wingskin
Joint,” Composites, Jan. 1982, pp. 47-53.

Reddy, J. N. and Pandey, A. K., “A First-Ply Failure Analysis of Composite
Laminates,” Computers and Structures, Vol. 25, No. 3, 1987, pp. 371-393.

Kim, R. Y. and Soni, S. R., “Experimental and Analytical Studies On the Onset
of Delamination In Laminated Composites,” J. Composite Materials, Vol. 18,
Jan. 1984, pp. 70-80.

Kim, R. Y. and Soni, S. R., “Failure of Composite Laminates Due to Combined
Interlaminar Normal and Shear Stresses,” Composites ‘86: Recent Advances in
Japan and the United States, K. Kawata, S. Umekawa, and A. Kobayashi (edi-
tors), Tokyo, 1986, pp. 341-350.

Brewer, J. C. and Lagace, P. A., “Quadratic Stress Criterion for Initiation of
Delamination,” J. Composite Materials, Vol. 22, Dec. 1988, pp. 1141-1155.

Reddy, J. N., An Introduction to the Finite Element Method , McGraw-Hill, NY,
1984.

Bhimaraddi, A. and Chandrashekhara, K., “Some Observations on the Model-
ing of Laminated Composite Beams with General Lay-ups,” Composite Struct.,
Vol. 19, 1991, pp. 371-380.

Kassegne, S. K., Layerwise Theory for Discre. - Stiffened Laminated Cylindrical
Shells, Virginia Polytechnic Institute and Sta. University, December 1992.

Jones, R. M., Mechanics of Composite Materials, Hemisphere Publishing Corp.,
NY, 1975.

252



167.

168.
169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

References

Reddy, J. N., Energy and Variational Methods in Applied Mechanics, John-Wiley
and Sons, Inc., 1984.

Ugural, A. C., Stresses in Plates and Shells, McGraw-Hill, NY, 1981.
Soedel, W., Vibrations of Shells and Plates, Marcel Dekker, Inc., 1981.

Cook, Robert D., Concepts and Applications of Finite Element Analysis, John
Wiley and Sons, NY, 1981.

Chaudhuri, R. A. and Seide, P., “An Approximate Semi-Analytical Method for
Prediction of Interlaminar Shear Stresses in an Arbitrarily Laminated Thick
Plate,” Computers and Structures, Vol. 25, No. 4, 1987, pp. 627-636.

Barbero, E. J. and Reddy, J. N., On a Generalized Laminate Plate Theory with
Application to Bending, Vibration, and Delamination Buckling in Composite
Laminates, Virginia Polytechnic Institute and State University, CCMS-89-20,
Oct. 1989.

Chaudhuri, R. A., “An Equilibrium Method for Prediction of Transverse Shear
Stresses in a Thick Laminated Plate,” Computers and Structures, Vol. 23, No.
2, 1986, pp. 139-146.

Engblom, J. J. and Ozden, O. O., “Finite Element Formulation Including
Interlaminar Stress Calculations,” Computers and Structures, Vol. 23, No. 2,
1986, pp. 241-249.

Byun, C. and Kapania, R. K., “Prediction of Interlaminar Stresses in Laminated
Plates Using Global Orthogonal Interpolation Polynomials,” A/4A Journal,
Vol. 30, No. 11, Nov. 1992, pp. 2740-2749.

Rao, K. P., “A Rectangular Laminated Anisotropic Shallow Thin Shell Finite
Element,” Comput. Meth. Appl. Mech. Eng., Vol. 15, 1978, pp. 13-33.

Scordelis, A. C. and Lo, K. S, “Computer Analysis of Cylindrical Shells,” J.
Am. Concr. Inst., Vol. 61, May 1964, pp. 539-561.

Zienkiewicz, O. C., Taylor, R. L., and Too, J. M., “Reduced Integration Tech-
niques in General Analysis of Plates and Shells,” Int. J. Num. Meth. Eng., Vol.
3, 1971, pp. 275-290.

Pawsey, S. F. and Clough, R. W., “Improved Numerical Integration of Thick
Shell Finite Elements,” Int. J. Num. Meth. Eng., Vol. 3, 1971, pp. 575-586.

Sander, G. and Idelsohn, S., “A Family of Conforming Finite Elements for
Deep Shell Analysis,” Int. J. Num. Meth. Eng., Vol. 18, 1982, pp. 363-380.

Kiciman, O. K. and Popov, E. P., “A General Finite Element Model for Shells

of Arbitrary Geometry,” Comput. Meth. Appl. Mech. Eng., Vol. 13, 1978, pp.
45-58.

253



182.

183.

184.

185.

186.

187.

188.

References

Palmerio, A. F., On a Moderate Rotation Theory for Anisotropic Shells, Ph.D.
Disscrtation, Virginia Polytechnic Institute and State University, Blacksburg,
VA, 1988.

Liao, C. L., An Incremental Total Lagrangian Formulation for General

Anisotropic Shell-Type Structures, Ph.D. Dissertation, Virginia Polytechnic In-
stitute and State University, Blacksburg, VA, 1987.

Roark, R. J. and Young, W. C., Formulas for Stress and Strain, Fifth Edition,
McGraw-Hill, NY, 1961.

Khdeir, A. A, Reddy, J. N. and Frederick, D., “A Study of Bending, Vibration
and Buckling of Cross-Ply Circular Cylindrical Shells,” Int. J. Engng. Sci., Vol.
27, No. 11, 1989, pp. 1337-1351.

Gendron, G. and Girdal, Z., “Op*imal Design of Geodesically Stiffened Com-
posite Cylindrical Shells,” 4744 Conference 1992, pp. 1 - 11.

Stewart, C. B. (compiler), “The Computational Structural Mechanics Testbed
User’'s Manual,” NASA TM-100644, 1989,

Knight, N. F,, Jr.,, Gillian, R. E., McCleary, S. L., Lotts, C. G., Poole, E. L.,

Overman, A. L., and Macy, S. C., “CSM Testbed Development and Large-
Scale Structural Applications,” NASA TM-4072, 1989.

254



Appendix A
Nonlinear Variational Statement for Laminated

Shells

Nonlinear Variational Statement for Laminated Shells 2558



Nonlinear Variational Statement
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Stiffness Terms

1=1,2,3,.., NINT (# of interfaces)
m = 1, 2, 3, .., M (mode shape)
= 1,2, 3, ..., N (mode shape)
= # of stiffeners

NC = # of constraint points per stiffener

NINT 1 _
[Kul = jzl T[Dn m + DisB, +D_£,/5]
NINT

LL
(K = D, =2 [~ anBa(Dls + D&)]
j=1
NINT
LL 1 —
(k= 3, = | —on( 5 b+ Db - D)
J=1
NS NC

(K| 3] = Z Z COS &, Xy, COS By

J=lp=1

NINT LL

[Kzll = Z 4 mﬂn(D +D66)]
J=1
NINT i

LL. [ 1
(Kl = ), 3= Dl + DIp7 + Bl (B + B) + L 01
J=1 -

NINT

LL, [ 1 —
[KZJJ = Z 4 (ﬂn R Dzz+ R Dg4+52v3_ 42)]
J=1

NS NC

[Ky 0] = ). ). sin ey, sin By,

j=lipml
NINT

[K31]=Z—L4£5'[ o % Db+ D b”s’s)]

j=

Ritz Stiffness and Mass Terms

259



[K;] = Z Ll [ﬁn< 2z+—R—D +1)23—“'f')]

LL. _ =
(K] = Z [Dss Xy ﬂ +— R /+%5I{3+%D§3+D§ls]

NS NC

= Z Z Sin @, €08 By,

J=lp=1
NS NC

(K] = Z Z Sin a,,x;, €os By,

J=lp=|
NS L[
(Kl = ) - [Eldlay?]

i-l

[Kys] = Z L [EA( ~ T, )]

[
NS NC

(K] = - Z Z COs ayny,

/-IP-1
NS

[st=z [ (-% c,ak)]

NS Ll 221 1
1= . 5[ a4 eiaf S ateh )]
l=]

NS NC
(Kso] = — Z Z Sin agny,
Jmlp=m]
NS Ll
(Kl = ) SE[Ealp?]
l- |
Ll
- NS NC
[Ks 10] = - Z Z sin By
J=1p=i

Ritz Stiffness and Mass Terms

260



Pl
9

L[ By
(K] = ) 5+ LtA( =+ T, )}
i=1
NS Fi
L[ I
[K]= —= allﬁl'f‘E‘A( ,ﬂ[ +_>}
77 &~ 2 ] R R'2
NS NC
[(Kul = - Z Z cos By,
Jj=1p=1
NS NC
(K] = Z Z COS &, X, €OS By,
J=1p=1
NS NC
(Ksal = — Z Z cos a7,
J=lpm=i
NS NC
[Ky] = Z Z $in &,,x;, €OS B,y
J=1p=1
NS NC
[Kys] = — Z Z sin a,n,,
j=lp=1
NS NC
(Kio,2] = Z Z sin amxjp sin 8.y,
j=lp=1
NS NC
[Kio,6] = — ZZ sin By,
J=1p=i
NS NC
(K31 = Z Z sin a,,x;, COS ﬁ,yjp
jmlp=l
NS NC
(K7l = - ZZ cos fm;p
J=lp=m]

Ritz Stiffness and Mass Terms

261



Mass Terms
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C.1 Layerwise Shell Element Direct Stiffness Terms
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C.2 Layerwise Shell Element Tangent Stiffness Terms
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C.3 Layerwise Beam Element Direct Stiffness Terms
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C.4 Layerwise Beam Element Tangent Stiffness Terms
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C.5 Computation of Higher Order Derivatives

The computation of the second and higher order derivatives of the interpolation func-

tions with respect to the global coordinates involves additional computations.

The first order derivatives with respect to the global coordinates are related to those with

respect to the local (or element) coordinates according to
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where the Jacobian matrix [J] is evaluated using the approximation of the geometry:

x = Zr:x,«zr’ (&, m)

Jm=l

y = iy,d”(é.n)

ju1

(C.5.2)

where ¢/ are the interpolation functions used for the geometry and (£, #) are the element
natural coordinates. For the isoparametric formulation r = NDS and ¢/ = y/. The

second order derivatives of " with respect to the global coordinates (x, y) are given by
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The matrices [ J; ] and [ J; ] are computed using Eq. (C.5.2).
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